Skip to main content

This website only uses technically necessary cookies. They will be deleted at the latest when you close your browser. To learn more, please read our Privacy Policy.

DE EN
Login
Logo, to home
  1. You are here:
  2. Side-Reactions of Polyvinylidene Fluoride and Polyvinylidene Chloride Binders with Aluminum Chloride-Based Ionic Liquid Electrolyte in Rechargeable Aluminum-Batteries
...

    Dataset: Side-Reactions of Polyvinylidene Fluoride and Polyvinylidene Chloride Binders with Aluminum Chloride-Based Ionic Liquid Electrolyte in Rechargeable Aluminum-Batteries

    • RADAR Metadata
    • Content
    • Statistics
    • Technical Metadata
    Alternate identifier:
    -
    Related identifier:
    (Is Identical To) https://publikationen.bibliothek.kit.edu/1000175896 - URL
    Creator/Author:
    Zemlyanushin, Eugen [Institut für Angewandte Materialien – Energiespeichersysteme (IAM-ESS), Karlsruher Institut für Technologie (KIT)]
    Contributors:
    (Other)
    Müller, Lykka Annika [Fakultät für Chemie und Biowissenschaften (CHEM-BIO), Karlsruher Institut für Technologie (KIT)]

    (Other)
    Bundesanstalt für Arbeitsschutz und Arbeitsmedizin (BAuA), Dortmund [Bundesanstalt für Arbeitsschutz und Arbeitsmedizin (BAuA), Dortmund]

    (Supervisor)
    Dsoke, Sonia https://orcid.org/0000-0001-9295-2110 [Institut für Angewandte Materialien – Energiespeichersysteme (IAM-ESS), Karlsruher Institut für Technologie (KIT)]
    Title:
    Side-Reactions of Polyvinylidene Fluoride and Polyvinylidene Chloride Binders with Aluminum Chloride-Based Ionic Liquid Electrolyte in Rechargeable Aluminum-Batteries
    Additional titles:
    -
    Description:
    (Abstract) Rechargeable Aluminum Batteries (RABs) use a Lewis acidic Aluminum chloride (AlCl3) and 1-Ethyl-3-methylimidazolium chloride (EMImCl) ionic liquid electrolyte. Electrode fabrication often relies on procedures from Lithium-Ion Batteries (LIBs), including the use of Polyvinylidene fluoride (PVdF) as a... Rechargeable Aluminum Batteries (RABs) use a Lewis acidic Aluminum chloride (AlCl3) and 1-Ethyl-3-methylimidazolium chloride (EMImCl) ionic liquid electrolyte. Electrode fabrication often relies on procedures from Lithium-Ion Batteries (LIBs), including the use of Polyvinylidene fluoride (PVdF) as a binder. However, PVdF reacts with Al2Cl7- in the RAB electrolyte, making it unsuitable for new battery types. The literature lacks details on the products formed, changes in the ionic liquid electrolyte, and the implications for electrochemical performance. With potential European Chemical Agency (ECHA) restrictions on per- and polyfluoroalkyl substances (PFAS) by 2025, Polyvinylidene chloride (PVdC) is being explored as an alternative binder. In contact with AlCl3:EMImCl (1.50:1.00) electrolyte, both, PVdF and PVdC transform into amorphous carbon during dehydrofluorination (DHF) and dehydrochlorination (DHC), respectively, as confirmed by Raman spectroscopy. Furthermore, via 19F-NMR, it is shown that the reaction time between the soaked polymers and the ionic liquid has a significant influence on the newly formed aluminum chlorofluoride (ACF) complexes. Electrochemical tests of graphite-based electrodes indicate increasing specific capacity of PVdF compared to PVdC with a continuous number of cycles. Amorphous carbon can prevent the disintegration of graphite and enhance conductivity. Furthermore, newly formed AlF4- can run a co-intercalation and lead to increasing specific capacity.

    Rechargeable Aluminum Batteries (RABs) use a Lewis acidic Aluminum chloride (AlCl3) and 1-Ethyl-3-methylimidazolium chloride (EMImCl) ionic liquid electrolyte. Electrode fabrication often relies on procedures from Lithium-Ion Batteries (LIBs), including the use of Polyvinylidene fluoride (PVdF) as a binder. However, PVdF reacts with Al2Cl7- in the RAB electrolyte, making it unsuitable for new battery types. The literature lacks details on the products formed, changes in the ionic liquid electrolyte, and the implications for electrochemical performance. With potential European Chemical Agency (ECHA) restrictions on per- and polyfluoroalkyl substances (PFAS) by 2025, Polyvinylidene chloride (PVdC) is being explored as an alternative binder. In contact with AlCl3:EMImCl (1.50:1.00) electrolyte, both, PVdF and PVdC transform into amorphous carbon during dehydrofluorination (DHF) and dehydrochlorination (DHC), respectively, as confirmed by Raman spectroscopy. Furthermore, via 19F-NMR, it is shown that the reaction time between the soaked polymers and the ionic liquid has a significant influence on the newly formed aluminum chlorofluoride (ACF) complexes. Electrochemical tests of graphite-based electrodes indicate increasing specific capacity of PVdF compared to PVdC with a continuous number of cycles. Amorphous carbon can prevent the disintegration of graphite and enhance conductivity. Furthermore, newly formed AlF4- can run a co-intercalation and lead to increasing specific capacity.

    Show all

    (Technical Remarks) Fourier-transform infrared (FT-IR) data of pristine PVdF and PVdC powders and soaked in AlCl3:EMImCl PVdF and PVdC. Raman data of PVdF and PVdC powders. Furthermore, in AlCl3:EMImCl ionic liquid soaked PVdF and PVdC. 19F-NMR (nuclear magnetic resonance) data of ionic liquid electrolyte (black liqui... Fourier-transform infrared (FT-IR) data of pristine PVdF and PVdC powders and soaked in AlCl3:EMImCl PVdF and PVdC. Raman data of PVdF and PVdC powders. Furthermore, in AlCl3:EMImCl ionic liquid soaked PVdF and PVdC. 19F-NMR (nuclear magnetic resonance) data of ionic liquid electrolyte (black liquid) after soaking PVdF for 1 hour and electrolyte soaked for 12 hours. Galvanostatic cycling with potential limitation (GCPL) data in the potential window of 0.30 V-2.30 V at a current density of 20 mA.g-1 of PVdF- and PVdC-based graphite positive electrodes at different cycle numbers. Corresponding cyclic voltammograms (CVs) data with a scan rate of 0.20 mV.s-1 at different cycles.

    Fourier-transform infrared (FT-IR) data of pristine PVdF and PVdC powders and soaked in AlCl3:EMImCl PVdF and PVdC. Raman data of PVdF and PVdC powders. Furthermore, in AlCl3:EMImCl ionic liquid soaked PVdF and PVdC. 19F-NMR (nuclear magnetic resonance) data of ionic liquid electrolyte (black liquid) after soaking PVdF for 1 hour and electrolyte soaked for 12 hours. Galvanostatic cycling with potential limitation (GCPL) data in the potential window of 0.30 V-2.30 V at a current density of 20 mA.g-1 of PVdF- and PVdC-based graphite positive electrodes at different cycle numbers. Corresponding cyclic voltammograms (CVs) data with a scan rate of 0.20 mV.s-1 at different cycles.

    Show all
    Keywords:
    Rechargeable Aluminum Batteries (RABs)
    Polyvinylidene fluoride (PVdF)
    Binder
    Dehydrofluorination (DHF)
    Ionic liquid (IL) electrolyte
    Related information:
    -
    Language:
    -
    Publishers:
    Karlsruhe Institute of Technology
    Production year:
    2024
    Subject areas:
    Chemistry
    Resource type:
    Dataset
    Data source:
    -
    Software used:
    -
    Data processing:
    -
    Publication year:
    2024
    Rights holders:
    Zemlyanushin, Eugen
    Funding:
    -
    Show all Show less
    Name Storage Metadata Upload Action
    Status:
    Published
    Uploaded by:
    kitopen
    Created on:
    2024-11-05
    Archiving date:
    2024-11-11
    Archive size:
    21.9 MB
    Archive creator:
    kitopen
    Archive checksum:
    d4e53584b22cfe6db6e5c64917c76cf4 (MD5)
    Embargo period:
    -
    DOI: 10.35097/2xq6d1at7a12y5sr
    Publication date: 2024-11-11
    Download Dataset
    Download (21.9 MB)

    Download Metadata
    Statistics
    0
    Views
    0
    Downloads
    Rights statement for the dataset
    This work is licensed under
    CC BY-SA 4.0
    CC icon
    Cite Dataset
    Zemlyanushin, Eugen (2024): Side-Reactions of Polyvinylidene Fluoride and Polyvinylidene Chloride Binders with Aluminum Chloride-Based Ionic Liquid Electrolyte in Rechargeable Aluminum-Batteries. Karlsruhe Institute of Technology. DOI: 10.35097/2xq6d1at7a12y5sr
    • About the Repository
    • Privacy Policy
    • Terms and Conditions
    • Legal Notices
    • Accessibility Declaration
    powered by RADAR
    1.22.9 (f) / 1.16.2 (b) / 1.22.4 (i)

    RADAR4KIT ist ein über das Internet nutzbarer Dienst für die Archivierung und Publikation von Forschungsdaten aus abgeschlossenen wissenschaftlichen Studien und Projekten für Forschende des KIT. Betreiber ist das Karlsruher Institut für Technologie (KIT). RADAR4KIT setzt auf dem von FIZ Karlsruhe angebotenen Dienst RADAR auf. Die Speicherung der Daten findet ausschließlich auf IT-Infrastruktur des KIT am Steinbuch Centre for Computing (SCC) statt.

    Eine inhaltliche Bewertung und Qualitätsprüfung findet ausschließlich durch die Datengeberinnen und Datengeber statt.

    1. Das Nutzungsverhältnis zwischen Ihnen („Datennutzerin“ bzw. „Datennutzer“) und dem KIT erschöpft sich im Download von Datenpaketen oder Metadaten. Das KIT behält sich vor, die Nutzung von RADAR4KIT einzuschränken oder den Dienst ganz einzustellen.
    2. Sofern Sie sich als Datennutzerin oder als Datennutzer registrieren lassen bzw. über Shibboleth legitimieren, kann Ihnen seitens der Datengeberin oder des Datengebers Zugriff auch auf unveröffentlichte Dokumente gewährt werden.
    3. Den Schutz Ihrer persönlichen Daten erklären die Datenschutzbestimmungen.
    4. Das KIT übernimmt für Richtigkeit, Aktualität und Zuverlässigkeit der bereitgestellten Inhalte keine Gewährleistung und Haftung, außer im Fall einer zwingenden gesetzlichen Haftung.
    5. Das KIT stellt Ihnen als Datennutzerin oder als Datennutzer für das Recherchieren in RADAR4KIT und für das Herunterladen von Datenpaketen keine Kosten in Rechnung.
    6. Sie müssen die mit dem Datenpaket verbundenen Lizenzregelungen einhalten.