Skip to main content

This website only uses technically necessary cookies. They will be deleted at the latest when you close your browser. To learn more, please read our Privacy Policy.

DE EN
Login
Logo, to home
  1. You are here:
  2. Pol-InSAR-Island - A Benchmark Dataset for Multi-frequency Pol-InSAR Data Land Cover Classification (Version 2)
...

    Dataset: Pol-InSAR-Island - A Benchmark Dataset for Multi-frequency Pol-InSAR Data Land Cover Classification (Version 2)

    • RADAR Metadata
    • Content
    • Statistics
    • Technical Metadata
    Alternate identifier:
    -
    Related identifier:
    -
    Creator/Author:
    Hochstuhl, Sylvia Marlene https://orcid.org/0000-0002-7480-105X [Institut für Photogrammetrie und Fernerkundung, Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung]

    Pfeffer, Niklas [Institut für Photogrammetrie und Fernerkundung, Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung]

    Thiele, Antje [Institut für Photogrammetrie und Fernerkundung, Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung]

    Hinz, Stefan [Institut für Photogrammetrie und Fernerkundung]

    Amao-Oliva, Joel [Deutsches Zentrum für Luft- und Raumfahrt]

    Scheiber, Rolf [Deutsches Zentrum für Luft- und Raumfahrt]

    Reigber, Andreas [Deutsches Zentrum für Luft- und Raumfahrt]

    Dirks, Holger [Deutsches Zentrum für Luft- und Raumfahrt]
    Contributors:
    -
    Title:
    Pol-InSAR-Island - A Benchmark Dataset for Multi-frequency Pol-InSAR Data Land Cover Classification (Version 2)
    Additional titles:
    -
    Description:
    (Abstract) Pol-InSAR-Island is the first publicly available multi-frequency Polarimetric Interferometric Synthetic Aperture Radar (Pol-InSAR) benchmark dataset for land cover classification. The strong scientific interest and the accompanying rapid development of machine learning, in particular deep learning, ... Pol-InSAR-Island is the first publicly available multi-frequency Polarimetric Interferometric Synthetic Aperture Radar (Pol-InSAR) benchmark dataset for land cover classification. The strong scientific interest and the accompanying rapid development of machine learning, in particular deep learning, has led to a significant improvement in automatic image interpretation in recent years. Research generally focuses on classification or segmentation of optical images, but there are already several successful approaches that apply deep learning techniques to the analysis of PolSAR or Pol-InSAR images. While the success of learning-based methods for the analysis of optical images has been strongly driven by public benchmark datasets such as ImageNet and Cityscapes, which contain a large number of annotated training and test data, comparable datasets for the PolSAR and especially the Pol-InSAR domain are almost non-existent. To fill this gap, this work presents a new multi-frequency Pol-InSAR benchmark dataset for training and testing learning-based methods. The dataset contains Pol-InSAR data acquired in S- and L-band by DLR’s airborne F-SAR system over the East Frisian island Baltrum. To allow interferometric analysis a repeat-pass configuration with a time offset of several minutes and a vertical baseline of 40 m is used. The image data are given as geocoded 6 × 6 coherency matrices on a 1 m × 1 m grid and is labeled by 12 different land cover classes. The Pol-InSAR-Island dataset is intended to improve the development of new learning-based approaches for multi-frequency Pol-InSAR classification. To ensure the comparability of various approaches, a defined division of the data into training and testing sections is given. For more information, refer to the corresponding research article: https://doi.org/10.1016/j.ophoto.2023.100047 Pol-InSAR-Island - A Benchmark Dataset for Multi-frequency Pol-InSAR Data Land Cover Classification (Version 2) is the updated version of the dataset. The PolSAR as well as the label images remain unchanged, but additional files containing the corresponding incidence angle and the vertical wavenumbers are added.

    Pol-InSAR-Island is the first publicly available multi-frequency Polarimetric Interferometric Synthetic Aperture Radar (Pol-InSAR) benchmark dataset for land cover classification. The strong scientific interest and the accompanying rapid development of machine learning, in particular deep learning, has led to a significant improvement in automatic image interpretation in recent years. Research generally focuses on classification or segmentation of optical images, but there are already several successful approaches that apply deep learning techniques to the analysis of PolSAR or Pol-InSAR images. While the success of learning-based methods for the analysis of optical images has been strongly driven by public benchmark datasets such as ImageNet and Cityscapes, which contain a large number of annotated training and test data, comparable datasets for the PolSAR and especially the Pol-InSAR domain are almost non-existent. To fill this gap, this work presents a new multi-frequency Pol-InSAR benchmark dataset for training and testing learning-based methods. The dataset contains Pol-InSAR data acquired in S- and L-band by DLR’s airborne F-SAR system over the East Frisian island Baltrum. To allow interferometric analysis a repeat-pass configuration with a time offset of several minutes and a vertical baseline of 40 m is used. The image data are given as geocoded 6 × 6 coherency matrices on a 1 m × 1 m grid and is labeled by 12 different land cover classes. The Pol-InSAR-Island dataset is intended to improve the development of new learning-based approaches for multi-frequency Pol-InSAR classification. To ensure the comparability of various approaches, a defined division of the data into training and testing sections is given. For more information, refer to the corresponding research article: https://doi.org/10.1016/j.ophoto.2023.100047 Pol-InSAR-Island - A Benchmark Dataset for Multi-frequency Pol-InSAR Data Land Cover Classification (Version 2) is the updated version of the dataset. The PolSAR as well as the label images remain unchanged, but additional files containing the corresponding incidence angle and the vertical wavenumbers are added.

    Show all

    (Technical Remarks) # Pol-InSAR-Island dataset: This folder contains multi-frequency Pol-InSAR data acquired by the F-SAR system of the German Aerospace Center (DLR) over Baltrum and corresponding land cover labels. Data structure: - data - FP1 # Flight path 1 - L # Frequency band - T6 # Pol-InSAR data ... # Pol-InSAR-Island dataset: This folder contains multi-frequency Pol-InSAR data acquired by the F-SAR system of the German Aerospace Center (DLR) over Baltrum and corresponding land cover labels. Data structure: - data - FP1 # Flight path 1 - L # Frequency band - T6 # Pol-InSAR data - incidence.bin # Incidence angle [rad] - kz_*.bin ' Vertical wavenumber for vv, hv, vh and vv polarization [rad/m] - pauli.bmp # Pauli-RGB image of the master scene - S - ... - FP2 # Flight path 2 - ... - label # Land cover label - FP1 # Flight path 1 - label_train.bin # Geocoded training label - label_test.bin # Geocoded test label - ... - FP2 # Flight path 2 - ... Data format: The data is provided as flat-binary raster files (.bin) with an accompanying ASCII header file (*.hdr) in ENVI-format. For Pol-InSAR data the real and imaginary components of the diagonal elments and upper triangle elements of the 6 x 6 coherency matrix are stored in seperated files (T11.bin, T12_real.bin, T12_imag.bin,...) Land cover labels contained in label_train.bin and label_test.bin are encoded as integers using the following mapping: 0 - Unassigned<br> 1 - Tidal flat<br> 2 - Water<br> 3 - Coastal shrub<br> 4 - Dense, high vegetation<br> 5 - White dune<br> 6 - Peat bog<br> 7 - Grey dune<br> 8 - Couch grass<br> 9 - Upper saltmarsh<br> 10 - Lower saltmarsh<br> 11 - Sand<br> 12 - Settlement

    Pol-InSAR-Island dataset:

    This folder contains multi-frequency Pol-InSAR data acquired by the F-SAR system of the German Aerospace Center (DLR) over Baltrum and corresponding land cover labels. Data structure:

    • data
      • FP1 # Flight path 1
        • L # Frequency band
          • T6 # Pol-InSAR data
          • incidence.bin # Incidence angle [rad]
          • kz_*.bin ' Vertical wavenumber for vv, hv, vh and vv polarization [rad/m]
          • pauli.bmp # Pauli-RGB image of the master scene
        • S
          • ...
      • FP2 # Flight path 2
        • ...
    • label # Land cover label
      • FP1 # Flight path 1
        • label_train.bin # Geocoded training label
        • label_test.bin # Geocoded test label
      • ...
      • FP2 # Flight path 2
        • ... Data format: The data is provided as flat-binary raster files (.bin) with an accompanying ASCII header file (*.hdr) in ENVI-format. For Pol-InSAR data the real and imaginary components of the diagonal elments and upper triangle elements of the 6 x 6 coherency matrix are stored in seperated files (T11.bin, T12_real.bin, T12_imag.bin,...) Land cover labels contained in label_train.bin and label_test.bin are encoded as integers using the following mapping: 0 - Unassigned
          1 - Tidal flat
          2 - Water
          3 - Coastal shrub
          4 - Dense, high vegetation
          5 - White dune
          6 - Peat bog
          7 - Grey dune
          8 - Couch grass
          9 - Upper saltmarsh
          10 - Lower saltmarsh
          11 - Sand
          12 - Settlement
    Show all Show markdown
    Keywords:
    Pol-InSAR
    PolSAR
    Multi-frequency
    Land cover classification
    Benchmark
    Coastal area
    Wadden Sea
    Related information:
    -
    Language:
    -
    Publishers:
    Karlsruhe Institute of Technology
    Production year:
    2023
    Subject areas:
    Geological Science
    Resource type:
    Dataset
    Data source:
    -
    Software used:
    -
    Data processing:
    -
    Publication year:
    2023
    Rights holders:
    Hochstuhl, Sylvia Marlene https://orcid.org/0000-0002-7480-105X

    Pfeffer, Niklas

    Thiele, Antje

    Hinz, Stefan

    Amao-Oliva, Joel

    Scheiber, Rolf

    Reigber, Andreas

    Dirks, Holger
    Funding:
    -
    Show all Show less
    Name Storage Metadata Upload Action
    Status:
    Published
    Uploaded by:
    kitopen
    Created on:
    2023-08-16
    Archiving date:
    2023-08-18
    Archive size:
    5.6 GB
    Archive creator:
    kitopen
    Archive checksum:
    9ba66a216b1ae441a5d4ef91e30a4aa8 (MD5)
    Embargo period:
    -
    The metadata was corrected retroactively. The original metadata will be available after download of the dataset.
    dataset/Pol-InSAR-Island - A Benchmark Dataset for Multi-frequency Pol-InSAR Data Land Cover Classification (Version 2)
    DOI: 10.35097/1700
    Publication date: 2023-08-18
    Download Dataset
    Download (5.6 GB)

    Download Metadata
    Statistics
    0
    Views
    0
    Downloads
    Rights statement for the dataset
    This work is licensed under
    CC BY-NC-SA 4.0
    CC icon
    Cite Dataset
    Hochstuhl, Sylvia Marlene; Pfeffer, Niklas; Thiele, Antje; et al. (2023): Pol-InSAR-Island - A Benchmark Dataset for Multi-frequency Pol-InSAR Data Land Cover Classification (Version 2). Karlsruhe Institute of Technology. DOI: 10.35097/1700
    • About the Repository
    • Privacy Policy
    • Terms and Conditions
    • Legal Notices
    • Accessibility Declaration
    powered by RADAR
    1.22.10 (f) / 1.16.4 (b) / 1.22.4 (i)

    RADAR4KIT ist ein über das Internet nutzbarer Dienst für die Archivierung und Publikation von Forschungsdaten aus abgeschlossenen wissenschaftlichen Studien und Projekten für Forschende des KIT. Betreiber ist das Karlsruher Institut für Technologie (KIT). RADAR4KIT setzt auf dem von FIZ Karlsruhe angebotenen Dienst RADAR auf. Die Speicherung der Daten findet ausschließlich auf IT-Infrastruktur des KIT am Steinbuch Centre for Computing (SCC) statt.

    Eine inhaltliche Bewertung und Qualitätsprüfung findet ausschließlich durch die Datengeberinnen und Datengeber statt.

    1. Das Nutzungsverhältnis zwischen Ihnen („Datennutzerin“ bzw. „Datennutzer“) und dem KIT erschöpft sich im Download von Datenpaketen oder Metadaten. Das KIT behält sich vor, die Nutzung von RADAR4KIT einzuschränken oder den Dienst ganz einzustellen.
    2. Sofern Sie sich als Datennutzerin oder als Datennutzer registrieren lassen bzw. über Shibboleth legitimieren, kann Ihnen seitens der Datengeberin oder des Datengebers Zugriff auch auf unveröffentlichte Dokumente gewährt werden.
    3. Den Schutz Ihrer persönlichen Daten erklären die Datenschutzbestimmungen.
    4. Das KIT übernimmt für Richtigkeit, Aktualität und Zuverlässigkeit der bereitgestellten Inhalte keine Gewährleistung und Haftung, außer im Fall einer zwingenden gesetzlichen Haftung.
    5. Das KIT stellt Ihnen als Datennutzerin oder als Datennutzer für das Recherchieren in RADAR4KIT und für das Herunterladen von Datenpaketen keine Kosten in Rechnung.
    6. Sie müssen die mit dem Datenpaket verbundenen Lizenzregelungen einhalten.