Skip to main content

This website only uses technically necessary cookies. They will be deleted at the latest when you close your browser. To learn more, please read our Privacy Policy.

DE EN
Login
Logo, to home
  1. You are here:
  2. Industrial Machine Tool Element Surface Defect Dataset
...

    Dataset: Industrial Machine Tool Element Surface Defect Dataset

    • RADAR Metadata
    • Content
    • Statistics
    • Technical Metadata
    Alternate identifier:
    (KITopen-DOI) 10.5445/IR/1000129520
    Related identifier:
    -
    Creator/Author:
    Schlagenhauf, Tobias [Schlagenhauf, Tobias]

    Landwehr, Magnus [Landwehr, Magnus]

    Fleischer, Jürgen [Fleischer, Jürgen]
    Contributors:
    -
    Title:
    Industrial Machine Tool Element Surface Defect Dataset
    Additional titles:
    -
    Description:
    (Abstract) Using Machine Learning Techniques in general and Deep Learning techniques in specific needs a certain amount of data often not available in large quantities in some technical domains. The manual inspection of Machine Tool Components, as well as the manual end of line check of products, are labour in... Using Machine Learning Techniques in general and Deep Learning techniques in specific needs a certain amount of data often not available in large quantities in some technical domains. The manual inspection of Machine Tool Components, as well as the manual end of line check of products, are labour intensive tasks in industrial applications that often want to be automated by companies. To automate the classification processes and to develop reliable and robust Machine Learning based classification and wear prognostics models there is a need for real-world datasets to train and test models on.

    Using Machine Learning Techniques in general and Deep Learning techniques in specific needs a certain amount of data often not available in large quantities in some technical domains. The manual inspection of Machine Tool Components, as well as the manual end of line check of products, are labour intensive tasks in industrial applications that often want to be automated by companies. To automate the classification processes and to develop reliable and robust Machine Learning based classification and wear prognostics models there is a need for real-world datasets to train and test models on.

    Show all

    (Technical Remarks) The dataset contains 1104 channel 3 images with 394 image-annotations for the surface damage type “pitting”. The annotations made with the annotation tool labelme, are available in JSON format and hence convertible to VOC and COCO format. All images come from two BSD types. The dataset available for... The dataset contains 1104 channel 3 images with 394 image-annotations for the surface damage type “pitting”. The annotations made with the annotation tool labelme, are available in JSON format and hence convertible to VOC and COCO format. All images come from two BSD types. The dataset available for download is divided into two folders, data with all images as JPEG, label with all annotations, and saved_model with a baseline model. The authors also provide a python script to divide the data and labels into three different split types – train_test_split, which splits images into the same train and test data-split the authors used for the baseline model, wear_dev_split, which creates all 27 wear developments and type_split, which splits the data into the occurring BSD-types. One of the two mentioned BSD types is represented with 69 images and 55 different image-sizes. All images with this BSD type come either in a clean or soiled condition. The other BSD type is shown on 325 images with two image-sizes. Since all images of this type have been taken with continuous time the degree of soiling is evolving. Also, the dataset contains as above mentioned 27 pitting development sequences with every 69 images. Instruction dataset split The authors of this dataset provide 3 types of different dataset splits. To get the data split you have to run the python script split_dataset.py. Script inputs: split-type (mandatory) output directory (mandatory) Different split-types: train_test_split: splits dataset into train and test data (80%/20%) wear_dev_split: splits dataset into 27 wear-developments type_split: splits dataset into different BSD types Example: C:\Users\Desktop>python split_dataset.py --split_type=train_test_split --output_dir=BSD_split_folder Result: ./BSD_slit_folder/train/ and ./BSD_slit_folder/test/

    The dataset contains 1104 channel 3 images with 394 image-annotations for the surface damage type “pitting”. The annotations made with the annotation tool labelme, are available in JSON format and hence convertible to VOC and COCO format. All images come from two BSD types. The dataset available for download is divided into two folders, data with all images as JPEG, label with all annotations, and saved_model with a baseline model. The authors also provide a python script to divide the data and labels into three different split types – train_test_split, which splits images into the same train and test data-split the authors used for the baseline model, wear_dev_split, which creates all 27 wear developments and type_split, which splits the data into the occurring BSD-types. One of the two mentioned BSD types is represented with 69 images and 55 different image-sizes. All images with this BSD type come either in a clean or soiled condition. The other BSD type is shown on 325 images with two image-sizes. Since all images of this type have been taken with continuous time the degree of soiling is evolving. Also, the dataset contains as above mentioned 27 pitting development sequences with every 69 images. Instruction dataset split The authors of this dataset provide 3 types of different dataset splits. To get the data split you have to run the python script split_dataset.py. Script inputs: split-type (mandatory) output directory (mandatory) Different split-types: train_test_split: splits dataset into train and test data (80%/20%) wear_dev_split: splits dataset into 27 wear-developments type_split: splits dataset into different BSD types Example: C:\Users\Desktop>python split_dataset.py --split_type=train_test_split --output_dir=BSD_split_folder Result: ./BSD_slit_folder/train/ and ./BSD_slit_folder/test/

    Show all Show markdown
    Keywords:
    Condition Monitoring
    Deep Learning
    Machine Learning
    Object Detection
    Semantic Segmentation
    Instance Segmentation
    Classification
    Dataset
    Related information:
    -
    Language:
    -
    Publishers:
    Karlsruhe Institute of Technology
    Production year:
    2021
    Subject areas:
    Engineering
    Resource type:
    Dataset
    Data source:
    -
    Software used:
    -
    Data processing:
    -
    Publication year:
    2023
    Rights holders:
    Schlagenhauf, Tobias

    Landwehr, Magnus

    Fleischer, Jürgen
    Funding:
    -
    Show all Show less
    Name Storage Metadata Upload Action
    Status:
    Published
    Uploaded by:
    kitopen
    Created on:
    2023-04-20
    Archiving date:
    2023-06-21
    Archive size:
    121.9 MB
    Archive creator:
    kitopen
    Archive checksum:
    8d3841b3d1f55d60a2ea6bc72c7429e8 (MD5)
    Embargo period:
    -
    DOI: 10.35097/1278
    Publication date: 2023-06-21
    Download Dataset
    Download (121.9 MB)

    Download Metadata
    Statistics
    0
    Views
    0
    Downloads
    Rights statement for the dataset
    This work is licensed under
    CC BY-SA 4.0
    CC icon
    Cite Dataset
    Schlagenhauf, Tobias; Landwehr, Magnus; Fleischer, Jürgen (2023): Industrial Machine Tool Element Surface Defect Dataset. Karlsruhe Institute of Technology. DOI: 10.35097/1278
    • About the Repository
    • Privacy Policy
    • Terms and Conditions
    • Legal Notices
    • Accessibility Declaration
    powered by RADAR
    1.22.10 (f) / 1.16.5 (b) / 1.22.4 (i)

    RADAR4KIT ist ein über das Internet nutzbarer Dienst für die Archivierung und Publikation von Forschungsdaten aus abgeschlossenen wissenschaftlichen Studien und Projekten für Forschende des KIT. Betreiber ist das Karlsruher Institut für Technologie (KIT). RADAR4KIT setzt auf dem von FIZ Karlsruhe angebotenen Dienst RADAR auf. Die Speicherung der Daten findet ausschließlich auf IT-Infrastruktur des KIT am Steinbuch Centre for Computing (SCC) statt.

    Eine inhaltliche Bewertung und Qualitätsprüfung findet ausschließlich durch die Datengeberinnen und Datengeber statt.

    1. Das Nutzungsverhältnis zwischen Ihnen („Datennutzerin“ bzw. „Datennutzer“) und dem KIT erschöpft sich im Download von Datenpaketen oder Metadaten. Das KIT behält sich vor, die Nutzung von RADAR4KIT einzuschränken oder den Dienst ganz einzustellen.
    2. Sofern Sie sich als Datennutzerin oder als Datennutzer registrieren lassen bzw. über Shibboleth legitimieren, kann Ihnen seitens der Datengeberin oder des Datengebers Zugriff auch auf unveröffentlichte Dokumente gewährt werden.
    3. Den Schutz Ihrer persönlichen Daten erklären die Datenschutzbestimmungen.
    4. Das KIT übernimmt für Richtigkeit, Aktualität und Zuverlässigkeit der bereitgestellten Inhalte keine Gewährleistung und Haftung, außer im Fall einer zwingenden gesetzlichen Haftung.
    5. Das KIT stellt Ihnen als Datennutzerin oder als Datennutzer für das Recherchieren in RADAR4KIT und für das Herunterladen von Datenpaketen keine Kosten in Rechnung.
    6. Sie müssen die mit dem Datenpaket verbundenen Lizenzregelungen einhalten.