Skip to main content

This website only uses technically necessary cookies. They will be deleted at the latest when you close your browser. To learn more, please read our Privacy Policy.

DE EN
Login
Logo, to home
  1. You are here:
  2. Seismological evidence for a multifault network at the subduction interface
...

    Dataset: Seismological evidence for a multifault network at the subduction interface

    • RADAR Metadata
    • Content
    • Statistics
    • Technical Metadata
    Alternate identifier:
    -
    Related identifier:
    -
    Creator/Author:
    Chalumeau, Caroline https://orcid.org/0000-0003-3215-9035 [Geophysikalisches Institut]

    Agurto-Detzel, Hans [Geophysikalisches Institut]

    Rietbrock, Andreas [Geophysikalisches Institut]

    Frietsch, Michael [Geophysikalisches Institut]

    Oncken, Onno [Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum]

    Segovia, Monica [Segovia, Monica]

    Galve, Audrey [Galve, Audrey]
    Contributors:
    -
    Title:
    Seismological evidence for a multifault network at the subduction interface
    Additional titles:
    -
    Description:
    (Abstract) This is the data generated in the paper: "Seismological evidence for a multifault network at the subduction interface". Paper abstract: Subduction zones generate the largest earthquakes on Earth, yet their detailed structure, and its influence on seismic and aseismic slip, remains poorly understood.... This is the data generated in the paper: "Seismological evidence for a multifault network at the subduction interface". Paper abstract: Subduction zones generate the largest earthquakes on Earth, yet their detailed structure, and its influence on seismic and aseismic slip, remains poorly understood. Geological studies of fossil subduction zones characterize the seismogenic interface as a 100m-1km thick zone1–3 within which deformation occurs mostly on meters-thick faults1,3–6. Conversely, seismological studies, with their larger spatial coverage and temporal resolution but lower spatial resolution, often image the seismogenic interface as a kilometers-wide band of seismicity7. Thus, how and when these meter-scale structures are active at the seismic-cycle timescale, and what influence they have on deformation is not known. Here, we detect these meters-thick faults with seismicity and show their influence on afterslip propagation. Using a local 3D velocity model and dense observations of over 1500 double-difference relocated earthquakes in Ecuador, we obtain an exceptionally detailed image of seismicity, showing that earthquakes occur sometimes on a single plane and sometimes on multiple meters-thick simultaneously active subparallel planes within the plate interface zone. This geometrical complexity impacts afterslip propagation, demonstrating the influence of fault continuity and structure on slip at the seismogenic interface. Our findings can therefore help create more realistic models of earthquake rupture, aseismic slip, and earthquake hazard in subduction zones.

    This is the data generated in the paper: "Seismological evidence for a multifault network at the subduction interface". Paper abstract: Subduction zones generate the largest earthquakes on Earth, yet their detailed structure, and its influence on seismic and aseismic slip, remains poorly understood. Geological studies of fossil subduction zones characterize the seismogenic interface as a 100m-1km thick zone1–3 within which deformation occurs mostly on meters-thick faults1,3–6. Conversely, seismological studies, with their larger spatial coverage and temporal resolution but lower spatial resolution, often image the seismogenic interface as a kilometers-wide band of seismicity7. Thus, how and when these meter-scale structures are active at the seismic-cycle timescale, and what influence they have on deformation is not known. Here, we detect these meters-thick faults with seismicity and show their influence on afterslip propagation. Using a local 3D velocity model and dense observations of over 1500 double-difference relocated earthquakes in Ecuador, we obtain an exceptionally detailed image of seismicity, showing that earthquakes occur sometimes on a single plane and sometimes on multiple meters-thick simultaneously active subparallel planes within the plate interface zone. This geometrical complexity impacts afterslip propagation, demonstrating the influence of fault continuity and structure on slip at the seismogenic interface. Our findings can therefore help create more realistic models of earthquake rupture, aseismic slip, and earthquake hazard in subduction zones.

    Show all

    (Technical Remarks) When using this data, please cite the paper "Seismological evidence for a multifault network at the subduction interface" (10.1038/s41586-024-07245-y) Contents of this directory: 1. Catalogue_NonLinLoc.csv: Catalogue of earthquakes located with NonLinLoc in a 1D model. 2. Catalogue_full_picks.txt: A... When using this data, please cite the paper "Seismological evidence for a multifault network at the subduction interface" (10.1038/s41586-024-07245-y) Contents of this directory: 1. Catalogue_NonLinLoc.csv: Catalogue of earthquakes located with NonLinLoc in a 1D model. 2. Catalogue_full_picks.txt: Arrival times picked with machine-learning. For each earthquake, the header (lines starting with #) lists the origin time, longitude, latitude, depth, number of phases, and average horizontal uncertainty from NonLinLoc. For each pick, the station, traveltime, time residual from NonLinLoc and phase are listed. 3. Catalogue_differential_arrivaltimes.txt: Cross-correlation differential times for all earthquake pairs with an interevent distance below 10 km. For each pair, the header (lines starting with #) lists the ID number of both events. For each pick, the station, differential time, correlation and phase are listed. To limit the file size, we only include cross-correlations above 0.6. 4. Catalogue_tomoDD.csv: Catalogue of all earthquakes relocated with double-difference in tomoDD in a 3D model. The total relative location error, calculated using bootstrapping, refers to the location error of the event relative to the rest of its cluster in TomoDD. Since all events were relocated in a single cluster in TomoDD, this essentially corresponds to the average location error relative to all other events. For details on the calculation of errors, please refer to the online methods of Chalumeau et al. (2024). 5. Errors_TomoDD.csv: Relative location errors for each event pair in TomoDD. 6. Catalogue_families.csv: Families of similar earthquakes with cross-correlations above 0.75. For details on the creation of families, please refer to the online methods of Chalumeau et al. (2024). 7. Stations.csv: List of station locations. If you have any questions, please email Caroline Chalumeau [caroline.chalumeau@kit.edu / carochalu06@gmail.com] or Andreas Rietbrock [andreas.rietbrock@kit.edu]

    When using this data, please cite the paper "Seismological evidence for a multifault network at the subduction interface" (10.1038/s41586-024-07245-y) Contents of this directory:

    1. Catalogue_NonLinLoc.csv: Catalogue of earthquakes located with NonLinLoc in a 1D model.
    2. Catalogue_full_picks.txt: Arrival times picked with machine-learning. For each earthquake, the header (lines starting with #) lists the origin time, longitude, latitude, depth, number of phases, and average horizontal uncertainty from NonLinLoc. For each pick, the station, traveltime, time residual from NonLinLoc and phase are listed.
    3. Catalogue_differential_arrivaltimes.txt: Cross-correlation differential times for all earthquake pairs with an interevent distance below 10 km. For each pair, the header (lines starting with #) lists the ID number of both events. For each pick, the station, differential time, correlation and phase are listed. To limit the file size, we only include cross-correlations above 0.6.
    4. Catalogue_tomoDD.csv: Catalogue of all earthquakes relocated with double-difference in tomoDD in a 3D model. The total relative location error, calculated using bootstrapping, refers to the location error of the event relative to the rest of its cluster in TomoDD. Since all events were relocated in a single cluster in TomoDD, this essentially corresponds to the average location error relative to all other events. For details on the calculation of errors, please refer to the online methods of Chalumeau et al. (2024).
    5. Errors_TomoDD.csv: Relative location errors for each event pair in TomoDD.
    6. Catalogue_families.csv: Families of similar earthquakes with cross-correlations above 0.75. For details on the creation of families, please refer to the online methods of Chalumeau et al. (2024).
    7. Stations.csv: List of station locations. If you have any questions, please email Caroline Chalumeau [caroline.chalumeau@kit.edu / carochalu06@gmail.com] or Andreas Rietbrock [andreas.rietbrock@kit.edu]
    Show all Show markdown
    Keywords:
    Seismology
    Subduction
    Aftershocks
    Afterslip
    Double-difference
    Related information:
    -
    Language:
    -
    Publishers:
    Karlsruhe Institute of Technology
    Production year:
    2024
    Subject areas:
    Physics
    Resource type:
    Dataset
    Data source:
    -
    Software used:
    -
    Data processing:
    -
    Publication year:
    2024
    Rights holders:
    Chalumeau, Caroline https://orcid.org/0000-0003-3215-9035

    Agurto-Detzel, Hans

    Rietbrock, Andreas

    Frietsch, Michael

    Oncken, Onno

    Segovia, Monica

    Galve, Audrey
    Funding:
    -
    Show all Show less
    Name Storage Metadata Upload Action
    Status:
    Published
    Uploaded by:
    kitopen
    Created on:
    2024-02-09
    Archiving date:
    2024-04-26
    Archive size:
    206.6 MB
    Archive creator:
    kitopen
    Archive checksum:
    1369fac3861b2e09c09270485e1074a9 (MD5)
    Embargo period:
    -
    DOI: 10.35097/1921
    Publication date: 2024-04-26
    Download Dataset
    Download (206.6 MB)

    Download Metadata
    Statistics
    0
    Views
    0
    Downloads
    Rights statement for the dataset
    This work is licensed under
    CC BY-NC-SA 4.0
    CC icon
    Cite Dataset
    Chalumeau, Caroline; Agurto-Detzel, Hans; Rietbrock, Andreas; et al. (2024): Seismological evidence for a multifault network at the subduction interface. Karlsruhe Institute of Technology. DOI: 10.35097/1921
    • About the Repository
    • Privacy Policy
    • Terms and Conditions
    • Legal Notices
    • Accessibility Declaration
    powered by RADAR
    1.22.10 (f) / 1.16.4 (b) / 1.22.4 (i)

    RADAR4KIT ist ein über das Internet nutzbarer Dienst für die Archivierung und Publikation von Forschungsdaten aus abgeschlossenen wissenschaftlichen Studien und Projekten für Forschende des KIT. Betreiber ist das Karlsruher Institut für Technologie (KIT). RADAR4KIT setzt auf dem von FIZ Karlsruhe angebotenen Dienst RADAR auf. Die Speicherung der Daten findet ausschließlich auf IT-Infrastruktur des KIT am Steinbuch Centre for Computing (SCC) statt.

    Eine inhaltliche Bewertung und Qualitätsprüfung findet ausschließlich durch die Datengeberinnen und Datengeber statt.

    1. Das Nutzungsverhältnis zwischen Ihnen („Datennutzerin“ bzw. „Datennutzer“) und dem KIT erschöpft sich im Download von Datenpaketen oder Metadaten. Das KIT behält sich vor, die Nutzung von RADAR4KIT einzuschränken oder den Dienst ganz einzustellen.
    2. Sofern Sie sich als Datennutzerin oder als Datennutzer registrieren lassen bzw. über Shibboleth legitimieren, kann Ihnen seitens der Datengeberin oder des Datengebers Zugriff auch auf unveröffentlichte Dokumente gewährt werden.
    3. Den Schutz Ihrer persönlichen Daten erklären die Datenschutzbestimmungen.
    4. Das KIT übernimmt für Richtigkeit, Aktualität und Zuverlässigkeit der bereitgestellten Inhalte keine Gewährleistung und Haftung, außer im Fall einer zwingenden gesetzlichen Haftung.
    5. Das KIT stellt Ihnen als Datennutzerin oder als Datennutzer für das Recherchieren in RADAR4KIT und für das Herunterladen von Datenpaketen keine Kosten in Rechnung.
    6. Sie müssen die mit dem Datenpaket verbundenen Lizenzregelungen einhalten.