Skip to main content

This website only uses technically necessary cookies. They will be deleted at the latest when you close your browser. To learn more, please read our Privacy Policy.

DE EN
Login
Logo, to home
  1. You are here:
  2. Numerical experiments to "Error Analysis of Exponential Integrators for Nonlinear Wave-Type Equations"
...

    Dataset: Numerical experiments to "Error Analysis of Exponential Integrators for Nonlinear Wave-Type Equations"

    • RADAR Metadata
    • Content
    • Statistics
    • Technical Metadata
    Alternate identifier:
    (KITopen-DOI) 10.5445/IR/1000130189
    Related identifier:
    -
    Creator/Author:
    Dörich, Benjamin https://orcid.org/0000-0001-5840-2270 [Dörich, Benjamin]
    Contributors:
    -
    Title:
    Numerical experiments to "Error Analysis of Exponential Integrators for Nonlinear Wave-Type Equations"
    Additional titles:
    -
    Description:
    (Abstract) This code has been used for the numerical experiments in the thesis "Error Analysis of Exponential Integrators for Nonlinear Wave-Type Equations" by Benjamin Dörich, see https://www.doi.org/10.5445/IR/1000130187.

    This code has been used for the numerical experiments in the thesis "Error Analysis of Exponential Integrators for Nonlinear Wave-Type Equations" by Benjamin Dörich, see https://www.doi.org/10.5445/IR/1000130187.


    (Technical Remarks) ## Readme This program is intended to reproduce the results from the thesis "Error Analysis of Exponential Integrators for Nonlinear Wave-Type Equations" by Benjamin Dörich #### Requirements The program is tested with 1) Ubuntu 16.04.7 LTS and Python 3.7.6 and the following version of its modules:... ## Readme This program is intended to reproduce the results from the thesis "Error Analysis of Exponential Integrators for Nonlinear Wave-Type Equations" by Benjamin Dörich #### Requirements The program is tested with 1) Ubuntu 16.04.7 LTS and Python 3.7.6 and the following version of its modules: - numpy - 1.15.4 - scipy - 1.4.1 - matplotlib - 3.2.1 - tikzplotlib - 0.9.6 (quasilinear only:) - dolfin - 2018.1.0 - fenics - 2018.1.0 2) Ubuntu 18.04.5 LTS and Python 3.6.9 and the following version of its modules: - numpy - 1.19.2 - scipy - 1.5.1 - matplotlib - 3.3.2 - tikzplotlib - 0.9.4 (quasilinear only:) - dolfin - 2019.2.0.dev0 - fenics - 2019.2.0.dev0 #### Figure 4.2 In the folder "semilinear_low_reg/Fig_convergence" open a console and run the following commands after each other. 1) Run "python3 run_diss_Strang_N_2pw09.py" 2) Run "python3 run_diss_Strang_N_2pw10.py" 3) Run "python3 run_diss_Strang_N_2pw11.py" After running the calculations, the errors can be found in the folder "results" as tikz-files. #### Figure 4.3 In the folder "semilinear_low_reg/Fig_inner_filter" open a console and run the following commands after each other. 1) Run "python3 run_diss_Strang_N_2pw09.py" 2) Run "python3 run_diss_Strang_N_2pw10.py" 3) Run "python3 run_diss_Strang_N_2pw11.py" After running the calculations, the errors can be found in the folder "results" as tikz-files. #### Figure 7.1 In the folder "quasilinear_expo" open a console and run the following commands after each other. 1) Run "python3 1_generate_initial_matrices.py" 2) Run "python3 2_diss_run_reference_solution.py" 3) Run "python3 3_diss_run_Euler_X.py" 4) Run "python3 4_diss_run_Euler_Y.py" 5) Run "python3 5_diss_run_midpoint.py" After running the calculations, the errors can be found in the folder "quasilinear_expo/extracted_data/". (a) settings_* contains the information of the config file (b) infos_* contains the computed errors (c) plot_* contains a tikz-file which gives the plot for the Euler and the midpoint rule separately.

    Readme

    This program is intended to reproduce the results from the thesis "Error Analysis of Exponential Integrators for Nonlinear Wave-Type Equations" by Benjamin Dörich

    Requirements

    The program is tested with

    1. Ubuntu 16.04.7 LTS and Python 3.7.6 and the following version of its modules:
    • numpy - 1.15.4
    • scipy - 1.4.1
    • matplotlib - 3.2.1
    • tikzplotlib - 0.9.6 (quasilinear only:)
    • dolfin - 2018.1.0
    • fenics - 2018.1.0
    1. Ubuntu 18.04.5 LTS and Python 3.6.9 and the following version of its modules:
    • numpy - 1.19.2
    • scipy - 1.5.1
    • matplotlib - 3.3.2
    • tikzplotlib - 0.9.4 (quasilinear only:)
    • dolfin - 2019.2.0.dev0
    • fenics - 2019.2.0.dev0

    Figure 4.2

    In the folder "semilinear_low_reg/Fig_convergence" open a console and run the following commands after each other.

    1. Run "python3 run_diss_Strang_N_2pw09.py"
    2. Run "python3 run_diss_Strang_N_2pw10.py"
    3. Run "python3 run_diss_Strang_N_2pw11.py" After running the calculations, the errors can be found in the folder "results" as tikz-files.

    Figure 4.3

    In the folder "semilinear_low_reg/Fig_inner_filter" open a console and run the following commands after each other.

    1. Run "python3 run_diss_Strang_N_2pw09.py"
    2. Run "python3 run_diss_Strang_N_2pw10.py"
    3. Run "python3 run_diss_Strang_N_2pw11.py" After running the calculations, the errors can be found in the folder "results" as tikz-files.

    Figure 7.1

    In the folder "quasilinear_expo" open a console and run the following commands after each other.

    1. Run "python3 1_generate_initial_matrices.py"
    2. Run "python3 2_diss_run_reference_solution.py"
    3. Run "python3 3_diss_run_Euler_X.py"
    4. Run "python3 4_diss_run_Euler_Y.py"
    5. Run "python3 5_diss_run_midpoint.py" After running the calculations, the errors can be found in the folder "quasilinear_expo/extracted_data/". (a) settings_* contains the information of the config file (b) infos_* contains the computed errors (c) plot_* contains a tikz-file which gives the plot for the Euler and the midpoint rule separately.
    Show all Show markdown
    Keywords:
    -
    Related information:
    -
    Language:
    -
    Publishers:
    Karlsruhe Institute of Technology
    Production year:
    2021
    Subject areas:
    Mathematics
    Resource type:
    Dataset
    Data source:
    -
    Software used:
    -
    Data processing:
    -
    Publication year:
    2023
    Rights holders:
    Dörich, Benjamin https://orcid.org/0000-0001-5840-2270
    Funding:
    -
    Show all Show less
    Name Storage Metadata Upload Action
    Status:
    Published
    Uploaded by:
    kitopen
    Created on:
    2023-04-20
    Archiving date:
    2023-06-21
    Archive size:
    96.3 kB
    Archive creator:
    kitopen
    Archive checksum:
    25ff0dbb0d88a28b3834bd38255c3846 (MD5)
    Embargo period:
    -
    DOI: 10.35097/1284
    Publication date: 2023-06-21
    Download Dataset
    Download (96.3 kB)

    Download Metadata
    Statistics
    0
    Views
    0
    Downloads
    Rights statement for the dataset
    This work is licensed under
    CC BY-NC-SA 4.0
    CC icon
    Cite Dataset
    Dörich, Benjamin (2023): Numerical experiments to "Error Analysis of Exponential Integrators for Nonlinear Wave-Type Equations". Karlsruhe Institute of Technology. DOI: 10.35097/1284
    • About the Repository
    • Privacy Policy
    • Terms and Conditions
    • Legal Notices
    • Accessibility Declaration
    powered by RADAR
    1.22.10 (f) / 1.16.4 (b) / 1.22.4 (i)

    RADAR4KIT ist ein über das Internet nutzbarer Dienst für die Archivierung und Publikation von Forschungsdaten aus abgeschlossenen wissenschaftlichen Studien und Projekten für Forschende des KIT. Betreiber ist das Karlsruher Institut für Technologie (KIT). RADAR4KIT setzt auf dem von FIZ Karlsruhe angebotenen Dienst RADAR auf. Die Speicherung der Daten findet ausschließlich auf IT-Infrastruktur des KIT am Steinbuch Centre for Computing (SCC) statt.

    Eine inhaltliche Bewertung und Qualitätsprüfung findet ausschließlich durch die Datengeberinnen und Datengeber statt.

    1. Das Nutzungsverhältnis zwischen Ihnen („Datennutzerin“ bzw. „Datennutzer“) und dem KIT erschöpft sich im Download von Datenpaketen oder Metadaten. Das KIT behält sich vor, die Nutzung von RADAR4KIT einzuschränken oder den Dienst ganz einzustellen.
    2. Sofern Sie sich als Datennutzerin oder als Datennutzer registrieren lassen bzw. über Shibboleth legitimieren, kann Ihnen seitens der Datengeberin oder des Datengebers Zugriff auch auf unveröffentlichte Dokumente gewährt werden.
    3. Den Schutz Ihrer persönlichen Daten erklären die Datenschutzbestimmungen.
    4. Das KIT übernimmt für Richtigkeit, Aktualität und Zuverlässigkeit der bereitgestellten Inhalte keine Gewährleistung und Haftung, außer im Fall einer zwingenden gesetzlichen Haftung.
    5. Das KIT stellt Ihnen als Datennutzerin oder als Datennutzer für das Recherchieren in RADAR4KIT und für das Herunterladen von Datenpaketen keine Kosten in Rechnung.
    6. Sie müssen die mit dem Datenpaket verbundenen Lizenzregelungen einhalten.