Skip to main content

This website only uses technically necessary cookies. They will be deleted at the latest when you close your browser. To learn more, please read our Privacy Policy.

DE EN
Login
Logo, to home
  1. You are here:
  2. SaWaM region averages for SREP
...

    Dataset: SaWaM region averages for SREP

    • RADAR Metadata
    • Content
    • Statistics
    • Technical Metadata
    Alternate identifier:
    -
    Related identifier:
    (Is Supplement To) 10.1038/s41598-021-89564-y - DOI
    Creator/Author:
    Portele, Tanja https://orcid.org/0000-0001-9436-710X [Karlsruhe Institute of Technology, Campus Alpin, Institute of Meteorology and Climate Research - Atmospheric Environmental Research (IMK-IFU)]

    Lorenz, Christof https://orcid.org/0000-0001-5590-5470 [Karlsruhe Institute of Technology, Campus Alpin, Institute of Meteorology and Climate Research - Atmospheric Environmental Research (IMK-IFU)]
    Contributors:
    -
    Title:
    SaWaM region averages for SREP
    Additional titles:
    -
    Description:
    (Abstract) Increasing frequencies of droughts require proactive preparedness, particularly in semi-arid regions. As forecasting of such hydrometeorological extremes several months ahead allows for necessary climate proofing, we assess the potential economic value of the seasonal forecasting system SEAS5 for de... Increasing frequencies of droughts require proactive preparedness, particularly in semi-arid regions. As forecasting of such hydrometeorological extremes several months ahead allows for necessary climate proofing, we assess the potential economic value of the seasonal forecasting system SEAS5 for decision making in water management. For seven drought-prone regions analyzed in America, Africa, and Asia, the relative frequency of drought months significantly increased from 10 to 30% between 1981 and 2018. We demonstrate that seasonal forecast-based action for droughts achieves potential economic savings up to 70% of those from optimal early action. For very warm months and droughts, savings of at least 20% occur even for forecast horizons of several months. Our in-depth analysis for the Upper-Atbara dam in Sudan reveals avoidable losses of 16 Mio US$ in one example year for early-action based drought reservoir operation. These findings stress the advantage and necessity of considering seasonal forecasts in hydrological decision making.

    Increasing frequencies of droughts require proactive preparedness, particularly in semi-arid regions. As forecasting of such hydrometeorological extremes several months ahead allows for necessary climate proofing, we assess the potential economic value of the seasonal forecasting system SEAS5 for decision making in water management. For seven drought-prone regions analyzed in America, Africa, and Asia, the relative frequency of drought months significantly increased from 10 to 30% between 1981 and 2018. We demonstrate that seasonal forecast-based action for droughts achieves potential economic savings up to 70% of those from optimal early action. For very warm months and droughts, savings of at least 20% occur even for forecast horizons of several months. Our in-depth analysis for the Upper-Atbara dam in Sudan reveals avoidable losses of 16 Mio US$ in one example year for early-action based drought reservoir operation. These findings stress the advantage and necessity of considering seasonal forecasts in hydrological decision making.

    Show all

    (Technical Info) The dataset contains the time series (ensemble forecasts, reanalysis data) and shape files which have been used for computing the different indicators in the article "Seasonal forecasts offer economic benefit for hydrological decision making in semi-arid regions".

    The dataset contains the time series (ensemble forecasts, reanalysis data) and shape files which have been used for computing the different indicators in the article "Seasonal forecasts offer economic benefit for hydrological decision making in semi-arid regions".

    Keywords:
    Seasonal forecasts, drought, climate trends, reanalysis, ERA5, SEAS5
    Related information:
    -
    Language:
    English
    Publishers:
    Karlsruhe Institute of Technology (KIT)
    Production year:
    2021
    Subject areas:
    Geological Science
    Environmental Science and Ecology
    Climate Science
    Resource type:
    Dataset
    Data source:
    (Other) ECMWF ERA5
    (Other) ECMWF SEAS5
    (Other) HydroSHEDS
    Software used:
    -
    Data processing:
    -
    Publication year:
    2021
    Rights holders:
    Karlsruhe Institute of Technology (KIT)
    Funding:
    Bundesministerium für Bildung und Forschung - (SaWaM)(02WGR1421)
    Show all Show less
    Name Storage Metadata Upload Action
    Status:
    Published
    Uploaded by:
    871893860b7f52e7214215615a0c1fcf
    Created on:
    2021-05-07
    Archiving date:
    2021-06-24
    Archive size:
    15.2 MB
    Archive creator:
    871893860b7f52e7214215615a0c1fcf
    Archive checksum:
    7613666eacbe1e771e4df4a0ff645b9a (MD5)
    Embargo period:
    -
    DOI: 10.35097/441
    Publication date: 2021-06-24
    Download Dataset
    Download (15.2 MB)

    Download Metadata
    Statistics
    0
    Views
    0
    Downloads
    Rights statement for the dataset
    This work is licensed under
    CC BY 4.0
    CC icon
    Cite Dataset
    Portele, Tanja; Lorenz, Christof (2021): SaWaM region averages for SREP. Karlsruhe Institute of Technology (KIT). DOI: 10.35097/441
    • About the Repository
    • Privacy Policy
    • Terms and Conditions
    • Legal Notices
    • Accessibility Declaration
    powered by RADAR
    1.22.10 (f) / 1.16.5 (b) / 1.22.4 (i)

    RADAR4KIT ist ein über das Internet nutzbarer Dienst für die Archivierung und Publikation von Forschungsdaten aus abgeschlossenen wissenschaftlichen Studien und Projekten für Forschende des KIT. Betreiber ist das Karlsruher Institut für Technologie (KIT). RADAR4KIT setzt auf dem von FIZ Karlsruhe angebotenen Dienst RADAR auf. Die Speicherung der Daten findet ausschließlich auf IT-Infrastruktur des KIT am Steinbuch Centre for Computing (SCC) statt.

    Eine inhaltliche Bewertung und Qualitätsprüfung findet ausschließlich durch die Datengeberinnen und Datengeber statt.

    1. Das Nutzungsverhältnis zwischen Ihnen („Datennutzerin“ bzw. „Datennutzer“) und dem KIT erschöpft sich im Download von Datenpaketen oder Metadaten. Das KIT behält sich vor, die Nutzung von RADAR4KIT einzuschränken oder den Dienst ganz einzustellen.
    2. Sofern Sie sich als Datennutzerin oder als Datennutzer registrieren lassen bzw. über Shibboleth legitimieren, kann Ihnen seitens der Datengeberin oder des Datengebers Zugriff auch auf unveröffentlichte Dokumente gewährt werden.
    3. Den Schutz Ihrer persönlichen Daten erklären die Datenschutzbestimmungen.
    4. Das KIT übernimmt für Richtigkeit, Aktualität und Zuverlässigkeit der bereitgestellten Inhalte keine Gewährleistung und Haftung, außer im Fall einer zwingenden gesetzlichen Haftung.
    5. Das KIT stellt Ihnen als Datennutzerin oder als Datennutzer für das Recherchieren in RADAR4KIT und für das Herunterladen von Datenpaketen keine Kosten in Rechnung.
    6. Sie müssen die mit dem Datenpaket verbundenen Lizenzregelungen einhalten.