Skip to main content

This website only uses technically necessary cookies. They will be deleted at the latest when you close your browser. To learn more, please read our Privacy Policy.

DE EN
Login
Logo, to home
  1. You are here:
  2. Potentiostatic Synthesis of Polyaniline Zinc and Iron Oxide Composites for Energy Storage Applications
...

    Dataset: Potentiostatic Synthesis of Polyaniline Zinc and Iron Oxide Composites for Energy Storage Applications

    • RADAR Metadata
    • Content
    • Statistics
    • Technical Metadata
    Alternate identifier:
    -
    Related identifier:
    (Is Identical To) https://publikationen.bibliothek.kit.edu/1000168792 - URL
    Creator/Author:
    Khan, Imran [Khan, Imran]

    ul Haq Ali Shah, Anwar [ul Haq Ali Shah, Anwar]

    Bilal, Salma [Bilal, Salma]

    Röse, Philipp https://orcid.org/0000-0001-6591-7133 [Institut für Angewandte Materialien – Elektrochemische Technologien (IAM-ET1), Karlsruher Institut für Technologie (KIT)]
    Contributors:
    -
    Title:
    Potentiostatic Synthesis of Polyaniline Zinc and Iron Oxide Composites for Energy Storage Applications
    Additional titles:
    -
    Description:
    (Abstract) This study introduces an efficient potentiostatic method to enhance the energy storage performance of polyaniline (PN) by synthesizing PN@ZnO (PNZ), PN@Fe2O3 (PNF), and PN@ZnFe2O4 (PNZF) hybrid electrodes with defined porous morphology. The precise selection and control of the working potential duri... This study introduces an efficient potentiostatic method to enhance the energy storage performance of polyaniline (PN) by synthesizing PN@ZnO (PNZ), PN@Fe2O3 (PNF), and PN@ZnFe2O4 (PNZF) hybrid electrodes with defined porous morphology. The precise selection and control of the working potential during electro-polymerization and metal oxide integration using the linear sweep voltammetry was key for synthesizing the polymer hybrid electrodes reproducible and with defined composition and structure. The PNZF electrode demonstrated the highest specific capacitances of 816 F g-1 and 791.3 F g 1 at a scan rate of 5 mV s-1 and 1.0 A g-1 current density, along with high power density and energy density of 1058.4 W kg-1 and 136.4 Wh kg 1, and with excellent stability retaining 90 % over 4000 cycles. We could attribute the excellent performance to a low charge transfer resistance of 25.0 Ω, a predominantly surface-controlled charge storage mechanism, and a porous morphology with uniform distribution of ZnFe2O4 particles in the polymer network, all resulting from the electrochemical synthesis method. Our study provides valuable and new insights into the structural, optical, and electrochemical properties of PN composites, particularly PNZF.

    This study introduces an efficient potentiostatic method to enhance the energy storage performance of polyaniline (PN) by synthesizing PN@ZnO (PNZ), PN@Fe2O3 (PNF), and PN@ZnFe2O4 (PNZF) hybrid electrodes with defined porous morphology. The precise selection and control of the working potential during electro-polymerization and metal oxide integration using the linear sweep voltammetry was key for synthesizing the polymer hybrid electrodes reproducible and with defined composition and structure. The PNZF electrode demonstrated the highest specific capacitances of 816 F g-1 and 791.3 F g 1 at a scan rate of 5 mV s-1 and 1.0 A g-1 current density, along with high power density and energy density of 1058.4 W kg-1 and 136.4 Wh kg 1, and with excellent stability retaining 90 % over 4000 cycles. We could attribute the excellent performance to a low charge transfer resistance of 25.0 Ω, a predominantly surface-controlled charge storage mechanism, and a porous morphology with uniform distribution of ZnFe2O4 particles in the polymer network, all resulting from the electrochemical synthesis method. Our study provides valuable and new insights into the structural, optical, and electrochemical properties of PN composites, particularly PNZF.

    Show all

    (Technical Remarks) The files are named according to the numbering of the figures in the publication. All relevant information and assignments can be found in the data header of each file. Figure_1: (a) Linear sweep voltammetry (LSV) of aniline, and (b) cyclic voltammetry of ZnO, Fe2O3 and ZnFe2O4 in the synthesis pre... The files are named according to the numbering of the figures in the publication. All relevant information and assignments can be found in the data header of each file. Figure_1: (a) Linear sweep voltammetry (LSV) of aniline, and (b) cyclic voltammetry of ZnO, Fe2O3 and ZnFe2O4 in the synthesis precursor solution. Figure 2: Current to time response (I-t) profiles during synthesis of (a) PN, (b) PNZ, (c) PNF and (d) PNZF. Figure 4: XRD spectra of (a) PN synthesized by CV during parameter identification, (b) PN synthesized by CA, (c) ZnO, (d) PNZ, (e) Fe2O3, (f) PNF, (g) ZnFe2O4, (h) PNZF. Figure 5: FT-IR spectra of (a) PN and its composites, (b) ZnO, Fe2O3 and ZnFe2O4. Figure 6: UV/Vis spectra of (a) PN and its composites and (b) ZnO, Fe2O3, and ZnFe2O4. Figure 7: Cyclic voltammograms of (a) PN, (b) PNZ, (c) PNF, and (d) PNFZ at different scan rates. Potentials are referred to SCE (KClsat. in H2O). Figure 8: Comparison of PN and its composites for (a) CV measurements at a scan rate of 5 mV s 1, (b) the calculated specific capacitances of PN, PNZ, PNF and PNZF for different scan rates, (c) the calculated capacitance retentions for 4,000 cycles at 30 mV s-1. Figure 9: GCD experiments at different current densities of (a) PN, (b) PNZ, (c) PNF, and (d) PNZF. (e) Comparison of the specific capacitances of PN and its composites at different current densities. Figure 10: EIS spectra of PN, PNZ, PNF, and PNFZ.

    The files are named according to the numbering of the figures in the publication. All relevant information and assignments can be found in the data header of each file. Figure_1: (a) Linear sweep voltammetry (LSV) of aniline, and (b) cyclic voltammetry of ZnO, Fe2O3 and ZnFe2O4 in the synthesis precursor solution. Figure 2: Current to time response (I-t) profiles during synthesis of (a) PN, (b) PNZ, (c) PNF and (d) PNZF. Figure 4: XRD spectra of (a) PN synthesized by CV during parameter identification, (b) PN synthesized by CA, (c) ZnO, (d) PNZ, (e) Fe2O3, (f) PNF, (g) ZnFe2O4, (h) PNZF. Figure 5: FT-IR spectra of (a) PN and its composites, (b) ZnO, Fe2O3 and ZnFe2O4. Figure 6: UV/Vis spectra of (a) PN and its composites and (b) ZnO, Fe2O3, and ZnFe2O4. Figure 7: Cyclic voltammograms of (a) PN, (b) PNZ, (c) PNF, and (d) PNFZ at different scan rates. Potentials are referred to SCE (KClsat. in H2O). Figure 8: Comparison of PN and its composites for (a) CV measurements at a scan rate of 5 mV s 1, (b) the calculated specific capacitances of PN, PNZ, PNF and PNZF for different scan rates, (c) the calculated capacitance retentions for 4,000 cycles at 30 mV s-1. Figure 9: GCD experiments at different current densities of (a) PN, (b) PNZ, (c) PNF, and (d) PNZF. (e) Comparison of the specific capacitances of PN and its composites at different current densities. Figure 10: EIS spectra of PN, PNZ, PNF, and PNFZ.

    Show all
    Keywords:
    conductive polymer
    functionalized polyaniline
    electrosynthesis
    metal oxide nanoparticles
    energy storage
    Related information:
    -
    Language:
    -
    Publishers:
    Karlsruhe Institute of Technology
    Production year:
    2024
    Subject areas:
    Engineering
    Resource type:
    Dataset
    Data source:
    -
    Software used:
    -
    Data processing:
    -
    Publication year:
    2024
    Rights holders:
    Khan, Imran

    ul Haq Ali Shah, Anwar

    Bilal, Salma

    Röse, Philipp https://orcid.org/0000-0001-6591-7133
    Funding:
    -
    Show all Show less
    Name Storage Metadata Upload Action
    Status:
    Published
    Uploaded by:
    kitopen
    Created on:
    2024-02-25
    Archiving date:
    2024-11-20
    Archive size:
    13.2 MB
    Archive creator:
    kitopen
    Archive checksum:
    67704a97972e7d493d0e44016a666002 (MD5)
    Embargo period:
    -
    DOI: 10.35097/1936
    Publication date: 2024-11-20
    Download Dataset
    Download (13.2 MB)

    Download Metadata
    Statistics
    0
    Views
    0
    Downloads
    Rights statement for the dataset
    This work is licensed under
    CC BY-SA 4.0
    CC icon
    Cite Dataset
    Khan, Imran; ul Haq Ali Shah, Anwar; Bilal, Salma; et al. (2024): Potentiostatic Synthesis of Polyaniline Zinc and Iron Oxide Composites for Energy Storage Applications. Karlsruhe Institute of Technology. DOI: 10.35097/1936
    • About the Repository
    • Privacy Policy
    • Terms and Conditions
    • Legal Notices
    • Accessibility Declaration
    powered by RADAR
    1.22.10 (f) / 1.16.5 (b) / 1.22.4 (i)

    RADAR4KIT ist ein über das Internet nutzbarer Dienst für die Archivierung und Publikation von Forschungsdaten aus abgeschlossenen wissenschaftlichen Studien und Projekten für Forschende des KIT. Betreiber ist das Karlsruher Institut für Technologie (KIT). RADAR4KIT setzt auf dem von FIZ Karlsruhe angebotenen Dienst RADAR auf. Die Speicherung der Daten findet ausschließlich auf IT-Infrastruktur des KIT am Steinbuch Centre for Computing (SCC) statt.

    Eine inhaltliche Bewertung und Qualitätsprüfung findet ausschließlich durch die Datengeberinnen und Datengeber statt.

    1. Das Nutzungsverhältnis zwischen Ihnen („Datennutzerin“ bzw. „Datennutzer“) und dem KIT erschöpft sich im Download von Datenpaketen oder Metadaten. Das KIT behält sich vor, die Nutzung von RADAR4KIT einzuschränken oder den Dienst ganz einzustellen.
    2. Sofern Sie sich als Datennutzerin oder als Datennutzer registrieren lassen bzw. über Shibboleth legitimieren, kann Ihnen seitens der Datengeberin oder des Datengebers Zugriff auch auf unveröffentlichte Dokumente gewährt werden.
    3. Den Schutz Ihrer persönlichen Daten erklären die Datenschutzbestimmungen.
    4. Das KIT übernimmt für Richtigkeit, Aktualität und Zuverlässigkeit der bereitgestellten Inhalte keine Gewährleistung und Haftung, außer im Fall einer zwingenden gesetzlichen Haftung.
    5. Das KIT stellt Ihnen als Datennutzerin oder als Datennutzer für das Recherchieren in RADAR4KIT und für das Herunterladen von Datenpaketen keine Kosten in Rechnung.
    6. Sie müssen die mit dem Datenpaket verbundenen Lizenzregelungen einhalten.