Skip to main content

This website only uses technically necessary cookies. They will be deleted at the latest when you close your browser. To learn more, please read our Privacy Policy.

DE EN
Login
Logo, to home
  1. You are here:
  2. Dataset: Simulation of turbulent flow over roughness strips
...

    Dataset: Dataset: Simulation of turbulent flow over roughness strips

    • RADAR Metadata
    • Content
    • Statistics
    • Technical Metadata
    Alternate identifier:
    (KITopen-DOI) 10.5445/IR/1000147862
    Related identifier:
    -
    Creator/Author:
    Neuhauser, Jonathan https://orcid.org/0000-0003-3288-6056 [Institut für Strömungsmechanik]

    Schäfer, Kay https://orcid.org/0000-0002-1704-8233 [Institut für Strömungsmechanik]

    Gatti, Davide [Institut für Strömungsmechanik]

    Frohnapfel, Bettina [Institut für Strömungsmechanik]
    Contributors:
    -
    Title:
    Dataset: Simulation of turbulent flow over roughness strips
    Additional titles:
    -
    Description:
    (Abstract) Heterogeneous roughness in the form of streamwise aligned strips is known to generate large scale secondary motions under turbulent flow conditions that can induce the intriguing feature of larger flow rates above rough than smooth surface parts. The hydrodynamical definition of a surface roughness ... Heterogeneous roughness in the form of streamwise aligned strips is known to generate large scale secondary motions under turbulent flow conditions that can induce the intriguing feature of larger flow rates above rough than smooth surface parts. The hydrodynamical definition of a surface roughness includes a large scale separation between the roughness height and the boundary layer thickness which is directly related to the fact that the drag of a laminar flow is not altered by the presence of roughness. Existing simplified approaches for direct numerical simulation (DNS) of roughness strips do not fulfill this requirement of an unmodified laminar base flow compared to a smooth wall reference. It is shown that disturbances induced in a modified laminar base flow can trigger large scale motions with resemblance to turbulent secondary flow. We propose a simple roughness model that allows to capture the particular features of turbulent secondary flow without impacting the laminar base flow. The roughness model is based on the prescription of a spanwise slip length, a quantity that can directly be translated into the Hama roughness function for a homogeneous rough surface. The heterogeneous application of the slip length boundary condition results in very good agreement with existing experimental data in terms of the secondary flow topology. In addition, the proposed modelling approach allows to quantitatively evaluate the drag increasing contribution of the secondary flow. Both the secondary flow itself and the related drag increase reveal a very small dependence on the gradient of the transition between rough and smooth surface parts only. Interestingly, the observed drag increase due to secondary flows above the modelled roughness is significantly smaller than the one previously reported for roughness resolving simulations. We hypothesize that this difference arises from the fact that roughness resolving simulations cannot truly fulfill the requirement of large scale separation.

    Heterogeneous roughness in the form of streamwise aligned strips is known to generate large scale secondary motions under turbulent flow conditions that can induce the intriguing feature of larger flow rates above rough than smooth surface parts. The hydrodynamical definition of a surface roughness includes a large scale separation between the roughness height and the boundary layer thickness which is directly related to the fact that the drag of a laminar flow is not altered by the presence of roughness. Existing simplified approaches for direct numerical simulation (DNS) of roughness strips do not fulfill this requirement of an unmodified laminar base flow compared to a smooth wall reference. It is shown that disturbances induced in a modified laminar base flow can trigger large scale motions with resemblance to turbulent secondary flow. We propose a simple roughness model that allows to capture the particular features of turbulent secondary flow without impacting the laminar base flow. The roughness model is based on the prescription of a spanwise slip length, a quantity that can directly be translated into the Hama roughness function for a homogeneous rough surface. The heterogeneous application of the slip length boundary condition results in very good agreement with existing experimental data in terms of the secondary flow topology. In addition, the proposed modelling approach allows to quantitatively evaluate the drag increasing contribution of the secondary flow. Both the secondary flow itself and the related drag increase reveal a very small dependence on the gradient of the transition between rough and smooth surface parts only. Interestingly, the observed drag increase due to secondary flows above the modelled roughness is significantly smaller than the one previously reported for roughness resolving simulations. We hypothesize that this difference arises from the fact that roughness resolving simulations cannot truly fulfill the requirement of large scale separation.

    Show all

    (Technical Remarks) The data for all simulations discussed in the main paper are provided as Numpy npz files. See the readme file for a detailed description of the file contents.

    The data for all simulations discussed in the main paper are provided as Numpy npz files. See the readme file for a detailed description of the file contents.

    Keywords:
    -
    Related information:
    -
    Language:
    -
    Publishers:
    Karlsruhe Institute of Technology
    Production year:
    2022
    Subject areas:
    Engineering
    Resource type:
    Dataset
    Data source:
    -
    Software used:
    -
    Data processing:
    -
    Publication year:
    2023
    Rights holders:
    Neuhauser, Jonathan https://orcid.org/0000-0003-3288-6056

    Schäfer, Kay https://orcid.org/0000-0002-1704-8233

    Gatti, Davide

    Frohnapfel, Bettina
    Funding:
    -
    Show all Show less
    Name Storage Metadata Upload Action
    Status:
    Published
    Uploaded by:
    kitopen
    Created on:
    2023-04-20
    Archiving date:
    2023-06-21
    Archive size:
    182.8 MB
    Archive creator:
    kitopen
    Archive checksum:
    520286087dd84c2c4579e44ef36f0dd8 (MD5)
    Embargo period:
    -
    DOI: 10.35097/1339
    Publication date: 2023-06-21
    Download Dataset
    Download (182.8 MB)

    Download Metadata
    Statistics
    0
    Views
    0
    Downloads
    Rights statement for the dataset
    This work is licensed under
    CC BY 4.0
    CC icon
    Cite Dataset
    Neuhauser, Jonathan; Schäfer, Kay; Gatti, Davide; et al. (2023): Dataset: Simulation of turbulent flow over roughness strips. Karlsruhe Institute of Technology. DOI: 10.35097/1339
    • About the Repository
    • Privacy Policy
    • Terms and Conditions
    • Legal Notices
    • Accessibility Declaration
    powered by RADAR
    1.22.9 (f) / 1.16.2 (b) / 1.22.4 (i)

    RADAR4KIT ist ein über das Internet nutzbarer Dienst für die Archivierung und Publikation von Forschungsdaten aus abgeschlossenen wissenschaftlichen Studien und Projekten für Forschende des KIT. Betreiber ist das Karlsruher Institut für Technologie (KIT). RADAR4KIT setzt auf dem von FIZ Karlsruhe angebotenen Dienst RADAR auf. Die Speicherung der Daten findet ausschließlich auf IT-Infrastruktur des KIT am Steinbuch Centre for Computing (SCC) statt.

    Eine inhaltliche Bewertung und Qualitätsprüfung findet ausschließlich durch die Datengeberinnen und Datengeber statt.

    1. Das Nutzungsverhältnis zwischen Ihnen („Datennutzerin“ bzw. „Datennutzer“) und dem KIT erschöpft sich im Download von Datenpaketen oder Metadaten. Das KIT behält sich vor, die Nutzung von RADAR4KIT einzuschränken oder den Dienst ganz einzustellen.
    2. Sofern Sie sich als Datennutzerin oder als Datennutzer registrieren lassen bzw. über Shibboleth legitimieren, kann Ihnen seitens der Datengeberin oder des Datengebers Zugriff auch auf unveröffentlichte Dokumente gewährt werden.
    3. Den Schutz Ihrer persönlichen Daten erklären die Datenschutzbestimmungen.
    4. Das KIT übernimmt für Richtigkeit, Aktualität und Zuverlässigkeit der bereitgestellten Inhalte keine Gewährleistung und Haftung, außer im Fall einer zwingenden gesetzlichen Haftung.
    5. Das KIT stellt Ihnen als Datennutzerin oder als Datennutzer für das Recherchieren in RADAR4KIT und für das Herunterladen von Datenpaketen keine Kosten in Rechnung.
    6. Sie müssen die mit dem Datenpaket verbundenen Lizenzregelungen einhalten.