Skip to main content

This website only uses technically necessary cookies. They will be deleted at the latest when you close your browser. To learn more, please read our Privacy Policy.

DE EN
Login
Logo, to home
  1. You are here:
  2. Drug-Induced Differential Gene Expression Analysis on Nanoliter Droplet Microarrays: Enabling Tool for Functional Precision Oncology
...

    Dataset: Drug-Induced Differential Gene Expression Analysis on Nanoliter Droplet Microarrays: Enabling Tool for Functional Precision Oncology

    • RADAR Metadata
    • Content
    • Statistics
    • Technical Metadata
    Alternate identifier:
    -
    Related identifier:
    (Is Identical To) https://publikationen.bibliothek.kit.edu/1000174652 - URL
    Creator/Author:
    El Khaled EL Faraj, Razan https://orcid.org/0000-0001-8713-4084 [Institut für Biologische und Chemische Systeme (IBCS), Karlsruher Institut für Technologie (KIT)]

    Popova, Anna [Institut für Biologische und Chemische Systeme (IBCS), Karlsruher Institut für Technologie (KIT)]
    Contributors:
    (Data Curator)
    Chakraborty, Shraddha [Chakraborty, Shraddha]

    (Data Collector)
    Zhou, Meijun [Institut für Biologische und Chemische Systeme (IBCS), Karlsruher Institut für Technologie (KIT)]

    (Other)
    Sobol, Morgan [Institut für Biologische Grenzflächen (IBG), Karlsruher Institut für Technologie (KIT)]

    (Data Curator)
    Thiele, David [Institut für Biologische Grenzflächen (IBG), Karlsruher Institut für Technologie (KIT)]

    (Other)
    ShatfordAdams, Lilly [ShatfordAdams, Lilly]

    (Other)
    Correa Cassal, Maximiano [Institut für Biologische Grenzflächen (IBG), Karlsruher Institut für Technologie (KIT)]

    (Other)
    Kaster, A.-K. [Institut für Angewandte Biowissenschaften (IAB), Karlsruher Institut für Technologie (KIT)]

    (Data Curator)
    Dietrich, Sascha [Dietrich, Sascha]

    (Project Leader)
    Levkin, P. https://orcid.org/0000-0002-5975-948X [Institut für Organische Chemie (IOC), Karlsruher Institut für Technologie (KIT)]
    Title:
    Drug-Induced Differential Gene Expression Analysis on Nanoliter Droplet Microarrays: Enabling Tool for Functional Precision Oncology
    Additional titles:
    -
    Description:
    (Abstract) Drug-induced differential gene expression analysis (DGEA) is an essential tool for uncovering the molecular basis of phenotypic changes in cells upon drug treatment, and ultimately for understanding the mechanisms of individual tumor responses to anticancer drugs. Performing high-throughput DGEA aft... Drug-induced differential gene expression analysis (DGEA) is an essential tool for uncovering the molecular basis of phenotypic changes in cells upon drug treatment, and ultimately for understanding the mechanisms of individual tumor responses to anticancer drugs. Performing high-throughput DGEA after drug treatment is challenging due to the very high cost and labor-intensive multi-step sample preparation protocols. In particular, performing drug-induced DGEA on cancer cells derived from patient biopsies is even more challenging due to the scarcity of available cells. We introduce a novel, miniaturized method operating at the nanoliter scale for drug-induced DGEA. This innovative approach facilitates high-throughput and parallel analysis of the drug response of cells derived from patients, effectively circumventing issues related to limited samples and the laborious nature of traditional protocols. The method is based on the Droplet Microarray (DMA) platform, a microscope glass slide with a pattern of hydrophilic spots separated by a superhydrophobic background, which enables the formation of droplets suitable for testing a minute number of cells with compounds. DMA allows for phenotypic analysis using microscopy, followed by obtaining cDNA from the treated cells and DGEA. The procedure involves cell lysis for mRNA isolation and cDNA conversion on DMA, followed by pooling of the droplets and subjecting them to qPCR analysis. In this work, we demonstrate the protocol for drug-induced DGEA on the DMA platform using cell lines and primary patient-derived chronic lymphocytic leukemia (CLL) cells. The methodology established here is critical for performing DGEA on a limited number of cells, with potential applications in functional precision oncology. In this way, this method helps to gain insights from the molecular profiling of unique patient-derived samples after drug treatment in vitro, which is essential for understanding individual tumor response to anticancer drugs.

    Drug-induced differential gene expression analysis (DGEA) is an essential tool for uncovering the molecular basis of phenotypic changes in cells upon drug treatment, and ultimately for understanding the mechanisms of individual tumor responses to anticancer drugs. Performing high-throughput DGEA after drug treatment is challenging due to the very high cost and labor-intensive multi-step sample preparation protocols. In particular, performing drug-induced DGEA on cancer cells derived from patient biopsies is even more challenging due to the scarcity of available cells. We introduce a novel, miniaturized method operating at the nanoliter scale for drug-induced DGEA. This innovative approach facilitates high-throughput and parallel analysis of the drug response of cells derived from patients, effectively circumventing issues related to limited samples and the laborious nature of traditional protocols. The method is based on the Droplet Microarray (DMA) platform, a microscope glass slide with a pattern of hydrophilic spots separated by a superhydrophobic background, which enables the formation of droplets suitable for testing a minute number of cells with compounds. DMA allows for phenotypic analysis using microscopy, followed by obtaining cDNA from the treated cells and DGEA. The procedure involves cell lysis for mRNA isolation and cDNA conversion on DMA, followed by pooling of the droplets and subjecting them to qPCR analysis. In this work, we demonstrate the protocol for drug-induced DGEA on the DMA platform using cell lines and primary patient-derived chronic lymphocytic leukemia (CLL) cells. The methodology established here is critical for performing DGEA on a limited number of cells, with potential applications in functional precision oncology. In this way, this method helps to gain insights from the molecular profiling of unique patient-derived samples after drug treatment in vitro, which is essential for understanding individual tumor response to anticancer drugs.

    Show all

    (Technical Remarks) The provided data are technical repeats from the research experimental details. including qPCR data and image analysis for cellular viability.

    The provided data are technical repeats from the research experimental details. including qPCR data and image analysis for cellular viability.

    Keywords:
    droplet microarray
    differential gene expression analysis
    qPCR
    drug screening
    functional precision oncology
    chronic lymphocytic leukemia
    Related information:
    -
    Language:
    -
    Publishers:
    Karlsruhe Institute of Technology
    Production year:
    2024
    Subject areas:
    Biology
    Resource type:
    Dataset
    Data source:
    -
    Software used:
    -
    Data processing:
    -
    Publication year:
    2024
    Rights holders:
    El Khaled EL Faraj, Razan https://orcid.org/0000-0001-8713-4084

    Popova, Anna
    Funding:
    -
    Show all Show less
    Name Storage Metadata Upload Action
    Status:
    Published
    Uploaded by:
    kitopen
    Created on:
    2024-10-01
    Archiving date:
    2024-10-10
    Archive size:
    33.6 GB
    Archive creator:
    kitopen
    Archive checksum:
    399e7d17e2b6e9a5c68a9db0db9f2008 (MD5)
    Embargo period:
    -
    DOI: 10.35097/e6434y1n86568and
    Publication date: 2024-10-10
    Download Dataset
    Download (33.6 GB)

    Download Metadata
    Statistics
    0
    Views
    0
    Downloads
    Rights statement for the dataset
    This work is licensed under
    CC BY 4.0
    CC icon
    Cite Dataset
    El Khaled EL Faraj, Razan; Popova, Anna (2024): Drug-Induced Differential Gene Expression Analysis on Nanoliter Droplet Microarrays: Enabling Tool for Functional Precision Oncology. Karlsruhe Institute of Technology. DOI: 10.35097/e6434y1n86568and
    • About the Repository
    • Privacy Policy
    • Terms and Conditions
    • Legal Notices
    • Accessibility Declaration
    powered by RADAR
    1.22.9 (f) / 1.16.2 (b) / 1.22.4 (i)

    RADAR4KIT ist ein über das Internet nutzbarer Dienst für die Archivierung und Publikation von Forschungsdaten aus abgeschlossenen wissenschaftlichen Studien und Projekten für Forschende des KIT. Betreiber ist das Karlsruher Institut für Technologie (KIT). RADAR4KIT setzt auf dem von FIZ Karlsruhe angebotenen Dienst RADAR auf. Die Speicherung der Daten findet ausschließlich auf IT-Infrastruktur des KIT am Steinbuch Centre for Computing (SCC) statt.

    Eine inhaltliche Bewertung und Qualitätsprüfung findet ausschließlich durch die Datengeberinnen und Datengeber statt.

    1. Das Nutzungsverhältnis zwischen Ihnen („Datennutzerin“ bzw. „Datennutzer“) und dem KIT erschöpft sich im Download von Datenpaketen oder Metadaten. Das KIT behält sich vor, die Nutzung von RADAR4KIT einzuschränken oder den Dienst ganz einzustellen.
    2. Sofern Sie sich als Datennutzerin oder als Datennutzer registrieren lassen bzw. über Shibboleth legitimieren, kann Ihnen seitens der Datengeberin oder des Datengebers Zugriff auch auf unveröffentlichte Dokumente gewährt werden.
    3. Den Schutz Ihrer persönlichen Daten erklären die Datenschutzbestimmungen.
    4. Das KIT übernimmt für Richtigkeit, Aktualität und Zuverlässigkeit der bereitgestellten Inhalte keine Gewährleistung und Haftung, außer im Fall einer zwingenden gesetzlichen Haftung.
    5. Das KIT stellt Ihnen als Datennutzerin oder als Datennutzer für das Recherchieren in RADAR4KIT und für das Herunterladen von Datenpaketen keine Kosten in Rechnung.
    6. Sie müssen die mit dem Datenpaket verbundenen Lizenzregelungen einhalten.