Alternate identifier:
-
Related identifier:
-
Creator/Author:
Ströbel, Robin https://orcid.org/0000-0002-2424-9789 [Institut für Produktionstechnik]

Mau, Marcus [Institut für Produktionstechnik]

Deucker, Samuel [Institut für Produktionstechnik]

Fleischer, Jürgen [Institut für Produktionstechnik]
Contributors:
-
Title:
Training and validation dataset 2 of milling processes for time series prediction
Additional titles:
-
Description:
(Abstract) Das Ziel des Datensatzes ist das Training und die Validierung von Modellen zur Vorhersage von Zeitreihen für Fräsprozesse. Dazu wurden an einer DMC 60H Prozesse mit einer Abtastrate von 500 Hz durch eine Siemens Industrial Edge aufgenommen. Die Maschine wurde steuerungstechnisch aufgerüstet. Es wurden Prozesse für das Modelltraining und die Validierung aufgenommen, welche sowohl für die Bearbeitung von Stahl sowie von Aluminium verwendet wurden. Es wurden mehrere Aufnahmen mit und ohne Werkstück (Aircut) erstellt, um möglichst viele Fälle abdecken zu können. Es handelt sich um die gleiche Versuchsreihe wie in "Training and validation dataset of milling processes for time series prediction" mit der DOI 10.5445/IR/1000157789 und hat zum Ziel, eine Untersuchung der Übertragbarkeit von Modellen zwischen verschiedenen Maschinen zu ermöglichen.
(Abstract) The aim of the dataset is to train and validate models for predicting time series for milling processes. For this purpose, processes were recorded at a sampling rate of 500 Hz by a Siemens Industrial Edge on a DMC 60H. The machine was upgraded in terms of control technology. Processes for model training and validation were recorded, suitable for both steel and aluminum machining. Several recordings were made with and without the workpiece (aircut) in order to cover as many cases as possible. This is the same series of experiments as in "Training and validation dataset of milling processes for time series prediction" with DOI 10.5445/IR/1000157789 and allows an investigation of the transferability of models between different machines.
(Technical Remarks) Documents: -Design of Experiments: Information on the paths such as the technological values of the experiments -Recording information: Information about the recordings with comments -Data: All recorded datasets. The first level contains the folders for training and validation both with and without the workpiece. In the next level, the individual test executions are located. The individual recordings are stored in the form of a JSON file. This consists of a header with all relevant information such as the signal sources. This is followed by the entries of the recorded time series. -NC-Code: NC programs executed on the machine Experimental data: -Machine: Retrofitted DMC 60H -Material: S235JR, 2007 T4 -Tools: -VHM-Fräser HPC, TiSi, ⌀ f8 DC: 5mm -VHM-Fräser HPC, TiSi, ⌀ f8 DC: 10mm -VHM-Fräser HPC, TiSi, ⌀ f8 DC: 20mm -Schaftfräser HSS-Co8, TiAlN, ⌀ k10 DC: 5mm -Schaftfräser HSS-Co8, TiAlN, ⌀ k10 DC: 10mm -Schaftfräser HSS-Co8, TiAlN, ⌀ k10 DC: 5mm -Workpiece blank dimensions: 150x75x50mm License: This work is licensed under a Creative Commons Attribution 4.0 International License. Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0).
Keywords:
Machine tool
Time series prediction
Machine Learning
Milling
CNC
Related information:
-
Language:
-
Production year:
Subject areas:
Engineering
Resource type:
Dataset
Data source:
-
Software used:
-
Data processing:
-
Publication year:
Rights holders:

Mau, Marcus

Deucker, Samuel

Fleischer, Jürgen
Funding:
-
Name Storage Metadata Upload Action

Number of views in the previous six months.

Dataset page views

398


Downloads

17


Overall statistics

Period Landing page accessed Dataset downloaded
Sep 2024 27 1
Aug 2024 65 5
Jul 2024 59 3
Jun 2024 51 3
May 2024 129 4
Apr 2024 67 1
Before 387 7
Total 785 24
Status:
Published
Uploaded by:
kitopen
Created on:
Archiving date:
2023-09-15
Archive size:
582.4 MB
Archive creator:
kitopen
Archive checksum:
8091df2b4cef258519c85721e60f2bbe (MD5)
Embargo end date:
-