Skip to main content

This website only uses technically necessary cookies. They will be deleted at the latest when you close your browser. To learn more, please read our Privacy Policy.

DE EN
Login
Logo, to home
  1. You are here:
  2. Research data for: Petry et al. - Industrialization of Perovskite Solar Cell Fabrication: Strategies to Achieve High-Throughput Vapor Deposition Processes
...

    Dataset: Research data for: Petry et al. - Industrialization of Perovskite Solar Cell Fabrication: Strategies to Achieve High-Throughput Vapor Deposition Processes

    • RADAR Metadata
    • Content
    • Statistics
    • Technical Metadata
    Alternate identifier:
    -
    Related identifier:
    (Is Identical To) https://publikationen.bibliothek.kit.edu/1000181664 - URL
    Creator/Author:
    Petry, Julian https://orcid.org/0009-0004-6653-9735 [Institut für Mikrostrukturtechnik (IMT), Karlsruher Institut für Technologie (KIT)]

    Škorjanc, Viktor [Helmholtz-Zentrum Berlin für Materialien und Energie (HZB)]

    Diercks, Alexander [Lichttechnisches Institut (LTI), Karlsruher Institut für Technologie (KIT)]

    Feeney, Thomas https://orcid.org/0000-0001-5032-0625 [Lichttechnisches Institut (LTI), Karlsruher Institut für Technologie (KIT)]

    Morsa, Amedeo [Morsa, Amedeo]

    Kimmig, Sara Rose [Institut für Angewandte Geowissenschaften (AGW), Karlsruher Institut für Technologie (KIT)]

    Baumann, Jens [Baumann, Jens]

    Löffler, Frank [Löffler, Frank]

    Auschill, Stefan [Auschill, Stefan]

    Damm, Joshua [Institut für Mikrostrukturtechnik (IMT), Karlsruher Institut für Technologie (KIT)]

    Baumann, Daniel [Institut für Mikrostrukturtechnik (IMT), Karlsruher Institut für Technologie (KIT)]

    Laufer, Felix https://orcid.org/0000-0002-6186-4772 [Lichttechnisches Institut (LTI), Karlsruher Institut für Technologie (KIT)]

    Kurpiers, Jona [Helmholtz-Zentrum Berlin für Materialien und Energie (HZB)]

    Müller, Michael [Forschungszentrum Jülich (FZJ)]

    Korte, Lars [Helmholtz-Zentrum Berlin für Materialien und Energie (HZB)]

    Albrecht, Steve [Helmholtz-Zentrum Berlin für Materialien und Energie (HZB)]

    Roß, Marcel [Helmholtz-Zentrum Berlin für Materialien und Energie (HZB)]

    Paetzold, Ulrich W. https://orcid.org/0000-0002-1557-8361 [Institut für Mikrostrukturtechnik (IMT), Karlsruher Institut für Technologie (KIT)]

    Fassl, Paul https://orcid.org/0000-0002-9604-3405 [Institut für Mikrostrukturtechnik (IMT), Karlsruher Institut für Technologie (KIT)]
    Contributors:
    -
    Title:
    Research data for: Petry et al. - Industrialization of Perovskite Solar Cell Fabrication: Strategies to Achieve High-Throughput Vapor Deposition Processes
    Additional titles:
    -
    Description:
    (Abstract) Vapor phase deposition processes hold great potential for industrializing the deposition of perovskite-based absorbers, offering a pathway to commercialization. Specifically, the scalability, ability to produce conformal coatings, and established use in industrial processing of optoelectronic device... Vapor phase deposition processes hold great potential for industrializing the deposition of perovskite-based absorbers, offering a pathway to commercialization. Specifically, the scalability, ability to produce conformal coatings, and established use in industrial processing of optoelectronic devices lead to the assumption that thermal sublimation is inherently suitable for commercial-scale perovskite solar cell production. However, ensuring economic viability requires a detailed assessment of achievable production throughputs, a key factor in achieving cost-effective large-scale manufacturing. This work bridges the gap between research focus and industry needs by introducing and analyzing three strategies to increase production throughput in an industrial context: (1) We investigate the thermal stability of key perovskite precursor materials to provide guidelines for safe operation by mitigating decomposition risks. (2) We critically evaluate the industrial feasibility of common deposition modes, including co-deposition and sequential deposition as scaling from laboratory to industrial production introduces new challenges in terms of material utilization and compositional material homogeneity. In addition, we analyze the static deposition rate profiles of key perovskite precursor materials and use this data to conceptualize a linear sublimation source. (3) A simulation-based approach allows an estimation of the horizontal scale-out required to achieve a production throughput of 1000 M10-size wafers per hour, which is considered the minimum threshold for pilot-scale production. This analysis explores strategies to achieve a fabrication throughput that is three orders of magnitude higher than the current academic discussion of accelerated vapor phase deposition based on laboratory-scale equipment. The sublimation of the organic precursor material is identified as a critical bottleneck and alternative deposition methods for achieving high production throughput are discussed. By addressing these key technical and economic challenges, our study offers practical insights for the transition of sublimation-based perovskite deposition from laboratory research to industrial-scale manufacturing.

    Vapor phase deposition processes hold great potential for industrializing the deposition of perovskite-based absorbers, offering a pathway to commercialization. Specifically, the scalability, ability to produce conformal coatings, and established use in industrial processing of optoelectronic devices lead to the assumption that thermal sublimation is inherently suitable for commercial-scale perovskite solar cell production. However, ensuring economic viability requires a detailed assessment of achievable production throughputs, a key factor in achieving cost-effective large-scale manufacturing. This work bridges the gap between research focus and industry needs by introducing and analyzing three strategies to increase production throughput in an industrial context: (1) We investigate the thermal stability of key perovskite precursor materials to provide guidelines for safe operation by mitigating decomposition risks. (2) We critically evaluate the industrial feasibility of common deposition modes, including co-deposition and sequential deposition as scaling from laboratory to industrial production introduces new challenges in terms of material utilization and compositional material homogeneity. In addition, we analyze the static deposition rate profiles of key perovskite precursor materials and use this data to conceptualize a linear sublimation source. (3) A simulation-based approach allows an estimation of the horizontal scale-out required to achieve a production throughput of 1000 M10-size wafers per hour, which is considered the minimum threshold for pilot-scale production. This analysis explores strategies to achieve a fabrication throughput that is three orders of magnitude higher than the current academic discussion of accelerated vapor phase deposition based on laboratory-scale equipment. The sublimation of the organic precursor material is identified as a critical bottleneck and alternative deposition methods for achieving high production throughput are discussed. By addressing these key technical and economic challenges, our study offers practical insights for the transition of sublimation-based perovskite deposition from laboratory research to industrial-scale manufacturing.

    Show all

    (Technical Remarks) This is the data generated during and/or analyzed during the study "Industrialization of Perovskite Solar Cell Fabrication: Strategies to Achieve High-Throughput Vapor Deposition Processes". The data is attributed to each figure in the original publicaton. The code for simulating the production thro... This is the data generated during and/or analyzed during the study "Industrialization of Perovskite Solar Cell Fabrication: Strategies to Achieve High-Throughput Vapor Deposition Processes". The data is attributed to each figure in the original publicaton. The code for simulating the production throughput has been deposited and is freely available at https://github.com/JulianPetry/Throughput-calculation. The code in the repository is associated with a GNU General Public License (GPL 3.0).

    This is the data generated during and/or analyzed during the study "Industrialization of Perovskite Solar Cell Fabrication: Strategies to Achieve High-Throughput Vapor Deposition Processes". The data is attributed to each figure in the original publicaton. The code for simulating the production throughput has been deposited and is freely available at https://github.com/JulianPetry/Throughput-calculation. The code in the repository is associated with a GNU General Public License (GPL 3.0).

    Show all
    Keywords:
    perovskite solar cells
    tandem solar cells
    photovoltaic
    vapor phase deposition
    vacuum deposition
    industrialization
    upscaling
    renewable energy
    sublimation
    evaporation
    precursor stability
    pilot line
    Related information:
    -
    Language:
    -
    Publishers:
    Karlsruhe Institute of Technology
    Production year:
    2025
    Subject areas:
    Engineering
    Resource type:
    Dataset
    Data source:
    -
    Software used:
    -
    Data processing:
    -
    Publication year:
    2025
    Rights holders:
    Petry, Julian https://orcid.org/0009-0004-6653-9735

    Škorjanc, Viktor

    Diercks, Alexander

    Feeney, Thomas https://orcid.org/0000-0001-5032-0625

    Morsa, Amedeo

    Kimmig, Sara Rose

    Baumann, Jens

    Löffler, Frank

    Auschill, Stefan

    Damm, Joshua

    Baumann, Daniel

    Laufer, Felix https://orcid.org/0000-0002-6186-4772

    Kurpiers, Jona

    Müller, Michael

    Korte, Lars

    Albrecht, Steve

    Roß, Marcel

    Paetzold, Ulrich W. https://orcid.org/0000-0002-1557-8361

    Fassl, Paul https://orcid.org/0000-0002-9604-3405
    Funding:
    -
    Show all Show less
    Name Storage Metadata Upload Action
    Status:
    Published
    Uploaded by:
    kitopen
    Created on:
    2025-05-12
    Archiving date:
    2025-05-14
    Archive size:
    161.8 MB
    Archive creator:
    kitopen
    Archive checksum:
    42d381c568234784dbbc38469bde3ea1 (MD5)
    Embargo period:
    -
    DOI: 10.35097/m0njhdq764acc19e
    Publication date: 2025-05-14
    Download Dataset
    Download (161.8 MB)

    Download Metadata
    Statistics
    0
    Views
    0
    Downloads
    Rights statement for the dataset
    This work is licensed under
    CC BY 4.0
    CC icon
    Cite Dataset
    Petry, Julian; Škorjanc, Viktor; Diercks, Alexander; et al. (2025): Research data for: Petry et al. - Industrialization of Perovskite Solar Cell Fabrication: Strategies to Achieve High-Throughput Vapor Deposition Processes. Karlsruhe Institute of Technology. DOI: 10.35097/m0njhdq764acc19e
    • About the Repository
    • Privacy Policy
    • Terms and Conditions
    • Legal Notices
    • Accessibility Declaration
    powered by RADAR
    1.22.10 (f) / 1.16.2 (b) / 1.22.4 (i)

    RADAR4KIT ist ein über das Internet nutzbarer Dienst für die Archivierung und Publikation von Forschungsdaten aus abgeschlossenen wissenschaftlichen Studien und Projekten für Forschende des KIT. Betreiber ist das Karlsruher Institut für Technologie (KIT). RADAR4KIT setzt auf dem von FIZ Karlsruhe angebotenen Dienst RADAR auf. Die Speicherung der Daten findet ausschließlich auf IT-Infrastruktur des KIT am Steinbuch Centre for Computing (SCC) statt.

    Eine inhaltliche Bewertung und Qualitätsprüfung findet ausschließlich durch die Datengeberinnen und Datengeber statt.

    1. Das Nutzungsverhältnis zwischen Ihnen („Datennutzerin“ bzw. „Datennutzer“) und dem KIT erschöpft sich im Download von Datenpaketen oder Metadaten. Das KIT behält sich vor, die Nutzung von RADAR4KIT einzuschränken oder den Dienst ganz einzustellen.
    2. Sofern Sie sich als Datennutzerin oder als Datennutzer registrieren lassen bzw. über Shibboleth legitimieren, kann Ihnen seitens der Datengeberin oder des Datengebers Zugriff auch auf unveröffentlichte Dokumente gewährt werden.
    3. Den Schutz Ihrer persönlichen Daten erklären die Datenschutzbestimmungen.
    4. Das KIT übernimmt für Richtigkeit, Aktualität und Zuverlässigkeit der bereitgestellten Inhalte keine Gewährleistung und Haftung, außer im Fall einer zwingenden gesetzlichen Haftung.
    5. Das KIT stellt Ihnen als Datennutzerin oder als Datennutzer für das Recherchieren in RADAR4KIT und für das Herunterladen von Datenpaketen keine Kosten in Rechnung.
    6. Sie müssen die mit dem Datenpaket verbundenen Lizenzregelungen einhalten.